Sooty Bark and Drippy Blight diseaes: “domestic invaders”?

sooty bark disease; photo by Vincet Gaucet via Bugwood

Recently, plant pathologists have paid more attention to pathogens — native to eastern North America — now killing trees on the West Coast. Years ago, the likelihood of such “domestic invaders” was hotly debated. However, these new detections provide examples of native micro-organisms that are apparently benign in the ecosystems in which they evolved, but that cause disease when moved to relatively nearby — but naïve — environments. I would argue that it is the absence of co-evolution of pathogen and host, not distance, that matters. In both cases, environmental stress on the trees appears to play a significant role. Such stress is expected to increase as the climate changes.

[In the past, these issues arose re: goldspotted oak borer – introduced to California from Arizona; and thousand cankers disease – introduced from Arizona to Western states and now to the East.]

Little is known about these diseases. So far, scientists have examined the pathogens’ impacts more thoroughly on plantings that are introduced to the location, so already outside of the forest biomes in which they evolved. Less attention has been paid to hosts native to the regions newly affected. I find this disturbing because I am most concerned about the possible impact to native ecosystems.

I will describe two such diseases. Both attack native tree species, not just the exotic trees described in research. Both were first detected in the Pacific Coast states in the late 1960s – i.e., more than 50 years ago. Why are they becoming prominent now – is it changes in the climate? Evolution? Just slow adaptation?

Example One – Sooty Bark Disease

Sooty-bark disease (Cryptostroma corticale) of maples (Acer spp.) is native to the Great Lakes region, where it causes no problems. However, it has been introduced to the West Coast, where all sources agree that the disease kills trees stressed by heat and drought. These stresses are expected to increase as the climate changes.  The disease is also a serious threat to human health. The fungus’ spores can cause serious pulmonary disease in humans

Sooty bark disease was detected in Pullman, Washington, near the Idaho border, in 1968. Now it is more widespread: it was detected in the Seattle area as of 2020 and the Sacramento area of California in 2019 [Curtis Ewing pers. comm.]. Sooty-bark disease has also spread to at least ten countries in Europe, ranging from the United Kingdom to Italy and Bulgaria.

Sources in Washington say hosts include several non-native species widely planted in the area – sycamore maples (Acer pseudoplatanus) [Chastagner], Norway maples (Acer platanoides), Japanese maple (A. palmatum), and horsechestnut (Aesculus hippocastanum) [Chastagner and Washington State University]. More troubling is the fact that several native tree species are also hosts. Big leaf maple (A. macrophyllum), and Pacific dogwood (Cornus nuttallii) are among the most significant. [Big leaf maple is a large hardwood tree in a region dominated by conifers. Pacific dogwood has already been decimated by the introduced disease dogwood anthracnose.] Sources in California add two other maples, these native to eastern North America, red (A. rubrum) and silver (A. saccharinum) maples.

bigleaf maples in Olympic National Park; NPS photo

The fungus initiates infection in a tree’s small branches, then spreads into the heartwood and both up and down the tree. It might also invade pruning wounds. The fungus grows more rapidly at higher temperatures. It is also facilitated by drought stress. When the fungus grows out to the bark, it causes the bark to blister; it then forms spore-forming structures. The spores are dispersed by wind. (Chastagner)

Washington State University’s Ornamental Plant Pathology division has called for more research on all aspects of the disease in trees:  

  • Distribution and spread of the disease;
  • Plant species susceptibility and host range;
  • Diagnostic methods and molecular approaches to improve diagnostic efficiency and capacity;
  • Pathogen life history and genetic diversity;
  • Factors that affect disease development and vulnerability (site, stress, age of host, etc.);
  • Potential of human mediated dispersal and vectors such as pruning tools;
  • Best management practices and worker protection.

So far, little has been done. Scientists in the Pacific Northwest have received a small amount of funding from the USDA Forest Service Forest Health Protection Emerging Pests program link + blog on appropriations to increase diagnostic services and to surveys trees elsewhere in the Puget Sound region.

Example Two – Bacterial Pathogen on Oaks

drippy blight disease on northern red oak; photo by Rachel Sitz, USDA Forest Service; via Bugwood

There is always concern about threats to oaks (Genus Quercus) because of their ecological, economic, and social importance. As Kozhar et al. point out, this genus is one of the most important groups of trees in many regions of the Northern Hemisphere. In North America specifically, oak forests compose a significant part of many forest ecosystems, especially in the East. California has 20 native species, Colorado has one. In addition, oaks are also often planted as shade trees in urban environments, which has resulted in movement of oak species to new geographic areas. There where they experience different environmental conditions, they might find new pests or alert us to the effects of climate change.

The bacterial oak pathogen Lonsdalea quercina is indigenous to the native range of northern red oak (Quercus rubra) in eastern North America. There, it does not cause disease in its co-evolved host. However, it has recently caused two outbreaks in the West – in California and Colorado. In the latter, trees themselves can die; in the former, acorns are damaged, threatening forest regeneration. Other Lonsdalea species have caused similar tree diseases in Europe.

California

In California, the bacterium has been present since at least 1967. It infects acorns of native oaks, including coast live oak (Q. agrifolia), Q. parvula (presumably the mainland subspecies, also named Q. p. var. shrevei),and interior live oak (Q. wislizeni).  The Morton Arboretum link says Q. parvula (presumably – again – the mainland subspecies) is currently threatened by sudden oak death (SOD). Coast live oak has also been highly affected by sudden oak death (SOD), DMF but it is not considered to be threatened. I expect – but sources don’t say – that the bacterium is affecting these species’ reproduction.

Various genotypes of L. quercina are randomly distributed across trees in both native and human-altered habitats and among all host species. Kohzar et al. say this is not surprising since all the host oak species are native to the region. Coast live oak is a major component of native forests and is also widely planted as a shade tree in residential areas. Furthermore, there has been no attempt to restrict the pathogen’s movement by adopting quarantines or other measures by phytosanitary agencies.

As a result, the inoculum can be moved across large distances by insects, birds, small mammals, and humans.

Bacterial pathogens can be associated with insects, relying on their feeding sites and other wounds to facilitate entry to the host’s tissues or for dissemination among hosts. In California, L. quercina might enter host tissue via wounds made by acorn weevils, filbertworms, and some cynipid wasps Kohzar et al.).

Colorado

The situation in Colorado is different. Significant dieback of exotic oaks planted in the state came to attention in the early 2000s. The hosts include non-native northern red oak, pin oak (Q. palustris), and Shumard oak (Q. shumardii). In Colorado, the bacterium causes “drippy blight disease” on the trees, not the acorns. The disease causes abundant ooze on symptomatic tissue. There has been a significant increase in tree mortality – with associated removal costs. The bacterium also has been found attacking Colorado’s one native oak, Q. gambelii; in this case, the pathogen attacks the acorns rather than the tree.

Due to small sample sizes, Kohzar et al. were unable to answer three key questions:

  • whether the Colorado L. quercina population comprises a new taxonomic species;
  • whether genetic variation in the bacterial populations are explained by the habitat (native or human-altered) or host; and 
  • whether the L. quercina infections on native Q. gambelii serves as an inoculum reservoir for planted Q. rubra hosts or vice versa.
gambel oak; photo by Dave Powell, USDA Forest Service (retired); via Bugwood

Surprisingly, despite its more recent emergence, the Colorado population of L. quercina has higher genetic diversity. Kohzar et al. suggest this might be due to repeated introductions of the bacterium on nursery stock brought in from the northern red oak’s native range in the East. [see below]

As in California, L. quercina infections are associated with insects, especially kermes scale (Allokermes galliformis). This insect does not travel long distances, which might help explain why the Colorado genotypes are limited to nearby trees, not dispersed randomly as in California.

However, kermes scale has been present in the state for far longer than the disease. The scale’s population spiked at the same time as the drippy blight outbreak was detected. Kohzar et al. could not determine whether the rise in scale populations and associated increase in number of entry points through feeding sites led to the increase of bacterial populations, or vice versa.

Kohzar et al. did determine that the Colorado populations of L. quercina were not introduced from California. They cannot explain the original introduction but think there might be continuing introductions from the native range of both northern red oak and L. quercina – the northeastern United States. They call for further studies to understand evolutionary relationships among L. quercina populations from different areas, including the native habitat of red oak in the East to clarify possible causes and sources of the recent outbreak of drippy blight in Colorado.

Role of Environmental Conditions

Kohzar et al. stress the importance of factors other than species’ introductions to new environments as the cause of emerging forest diseases. They say such other factors as changes in environmental conditions, new host-vector associations, cryptic disease agents (e.g., pathogens with a very long latency period or endophytes changing their behavior to pathogenic), hypervirulent strains of known pathogenic species, and/or newly emerging species of unknown origin as key factors leading to disease emergence in forest ecosystems around the globe.

In the case of L. quercina in California and especially Colorado, Kohzar et al. point to stress on the trees caused by new environmental factors, e.g., rapid climate change. [Of course, oaks from humid regions of eastern North America are already outside their natural habitat in much-dryer Colorado.] They support this conclusion by noting the simultaneous appearance of four new diseases caused by Lonsdalea species in different parts of the world during the 1990s and early 2000s. These were Lonsdalea quercina in Colorado; L. britannica on oaks in Great Britain; L. iberica in Spain; and L. populi bark canker on poplar species in Hungary, China, and Spain. All cause similar symptoms of drippy blight disease.

SOURCES

Chastagner, Gary. Professor, Plant Pathology, Washington State University. https://pnwhandbooks.org/plantdisease/host-disease/maple-acer-spp-sooty-bark-disease

Ewing, Curtis. Entomologist, CalFire. Pers. comm. March 2023.

Kozhar, O., R.A. Sitz, R. Woyda, L. Legg, J.R. Ibarra Caballero, I.S. Pearse, Z. Abdo, J.E. Stewart. 2023. Population genomic analysis of an emerging pathogen Lonsdalea quercina affecting various species of oaks in western North America. BioRxiv  https://www.biorxiv.org/content/10.1101/2023.01.20.524998v1

Washington State University Ornamental Plant Pathology https://ppo.puyallup.wsu.edu/sbd/

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Eradicating Invasive Species: You need “social license” to succeed

spread of non-native conifers in mountains of New Zealand; photos by Richard Bowman; New Zealand government website

As those of us who want to “do something” to counter bioinvasions struggle to mobilize both the  resources and the political will necessary, I rejoice that more studies are examining what factors affect “social license” [= public approva] for such programs. One such study was recently published in New Zealand — Mason et al. (full citation at the end of the blog). New Zealand enjoys a greater appreciation of the uniqueness of its biology and awareness of invasive species’ impacts than the United States. However, their findings might provide useful guidance in the US and elsewhere.

Mason et al. sought to understand motivations of, and constraints on, those local groups responsible for controlling the spread of non-native conifers into New Zealand’s remnant native ecosystems. Non-forest ecosystems across much of the country are at risk of rapidly transforming into exotic conifer forests. For these reasons, authorities are pressing for timely removal of existing seed sources, that is, mature non-native conifer trees of several species. The blog I posted earlier apparently describes effects of conifer invasions in lowland ecosystems, whereas the Programme described here is focused on high-elevation systems.

The eradication effort in the study is the National Wilding Conifer Control Programme, establishedin 2016. A large increase in funding provided during the COVID-19 lockdown made it practical to try to eradicate seed sources from large swathes of vulnerable land. The Programme coordinates control efforts across the country, working across property and land-tenure boundaries. Landowners are expected to cover 20% of the cost of removing conifers from their land. Since removing all seed sources of high-risk conifer species from the landscape is key to achieving long-term goals, success is unlikely if significant seed sources are allowed to persist.

Mason et al. combined workshops, questionnaires, and site visits to gather data on particular aspects of this Programme. They found that social resistance, rather than lack of scientific knowledge, was often the main barrier to success in managing widespread invasive species. The authors do not address whether the fact that only 30 people provided information for their study might undermine the reliability of their findings.

map of conifer wilding sites; adapted from Wilding conifers – New Zealand history and research background, a presentation by Nick Ledgard at the “Managing wilding conifers in New Zealand – present and future” workshop (2003)

The authors suggest that the main benefit of scientific information might be to increase stakeholders’ support for management interventions — rather than to guide manager’ decisions about which strategies to pursue.  To support social license, invasive species research programs might need to focus not only on cost-effective control technologies and strategies, but – perhaps especially — the benefits (both tangible and intangible) of invasive species control for society.

Mason et al. found that people were motivated to combat conifer invasions by impacts with direct influence on humans or human activities (e.g., reduced water yield, damage to infrastructure from wildfires, reduced tourist activities due to landscape transformation) and also by impacts affect ecosystems (e.g.,  impacts on biodiversity, aquatic ecosystems and landscapes).  

People objected to control or eradication programs primarily because of social concerns. These included the unwillingness of landowners to participate and regulatory frameworks that had perverse incentives.

Mason et al. called for greater efforts by scientists to persuade stakeholders[p1]  to allow removal of “wilding” conifers from private land and development of more appropriate regulations. They found that forecasting models were particularly effective in persuading people to support these efforts. It seems to me that outreach teams might need “translators” to convert scientists’ findings to information that would be more useful by stakeholders.

The authors concede that the “wilding conifer” situation has unique attributes. First, invading conifers present a stark, easily seen difference between native and invaded ecosystems. Second, some – but not all—stakeholders appreciate the uniqueness of New Zealand’s biomes. Third, the impacts of conifer invasion are sufficiently well known that they can be described succinctly and accurately.

Do these unique attributes undercut the relevance of this study to North America? It is still true that ongoing support from local stakeholders (including landowners and community groups) influences the effectiveness or profitability of managing invasive species. .It is also true that groups’ varying values affect willingness to support the activities.

Mason et al. think through the issue of stakeholders’ conflicting perspectives on the value of particular invasive species and the values threatened by that invader. These can include ethical or safety concerns around management methods, particularly regarding toxins and genetic modification. Economoic costs are also a factor – especially if the landowner must pay all or some of them.

I find it interesting that the government simultaneously funded a 5-year research program to study various issues regarding the spread, ecosystem impacts, and control of wilding conifers. The result is the Mason et al. study discussed here. I wish the U.S. funded independent analyses of its invasive species programs!

Pinus contorta – the most rapidly growing Pinus introduced to New Zealand; photo by Walter Siegmund / Wikimedia

More Details, Policy Suggestions

Workshop attendees unanimously identified landscape impacts as a reason for controlling wilding conifers. This primarily concerned the loss of New Zealand’s visual heritage or cultural identity rather than loss of native species’ habitats. When the landowner was raised in Europe, these cultural or heritage values sometimes had the opposite effect, since they see conifer forests as important components of “natural” landscapes.

Currently, landowner funding and permission is required for conifer removal. Some individual landowners want to establish new forestry plantings. Some resist removal of existing forestry plantations (which provide income) and shelter belts (which provide shelter for livestock in high country landscapes). Some landowners were unwilling to pay their 20% of removal costs. Or they objected to certain conifer control methods—particularly helicopter spraying of herbicides. New Zealand’s regulatory process also requires years of negotiating to remove standing trees – further delaying any action. In theory, landowners who resist removal could be prosecuted under the Biosecurity Act. However, this approach has never been tried for removing wilding conifers.

Mason et al. suggested several changes in policy to overcome some of these barriers.

First, forestry consultants can “game” the wilding conifer “risk calculator” to obtain government approval to establish conifer plantations in high-risk environments. The authors suggest that authorities create a “liability calculator.” Under this system, landowners wishing to retain conifers on their land for whatever reason would be liable for any subsequent containment costs. However, developing such a tool requires more finely-scaled models of conifer spread.

Second, given the high costs of combatting invading conifers if seed sources are allowed to persist, they suggested that it might be more cost-effective for the control program to pay for plantation removal under New Zealand’s Emissions Trading Scheme.

Given the overwhelmingly social and regulatory nature of barriers to success, the primary role for scientific information is providing assessments of outcomes in the absence of wilding conifer control. Preferred messages were return-on-investment estimates and forecasts of ecosystem impacts, particularly relating to biodiversity loss, water yield reduction, and wildfire hazard. Forecasts were key to demonstrating that management interventions reduced future control costs and avoided environmental impacts which large sections of the community value (i.e. biodiversity loss, reduction in water yield and agricultural productivity, increased wildfire risks). Practitioners felt that forecasting models might also channel research toward areas of high uncertainty. Mason et al. recognize the difficulties presented by inherent complexity of ecological systems. However, they think “good practice” guidelines on forecasting are emerging.

The authors find that information content and presentation need to be tailored to the various audiences – most of whom lack experience in interpreting data from environmental forecasting models. They suggest that outreach materials focus on clear illustration of the tangible and intangible benefits of wilding conifer management rather than detailed explorations of scenarios. Participants suggested ways to improve the web tool to make it more accessible to a non-expert audience. 

Mason et al. mention aspects that require balancing, but don’t suggest criteria for making these choices. They say it is important to include all relevant stakeholders in invasive species management governance bodies. The absence of stakeholders with positive attitudes to wilding conifer invasions led to unanticipated external social resistance to the Programme. They recognize that including stakeholders with conflicting interests might obstruct the decision-making process.  Also, in areas where there has been success in containing conifers’ spread, people can’t see invading trees, so they don’t recognize the problem. They also note that existing data do not adequately recognize risks of spread from deliberately planted seed sources such as shelter-belts, plantations and amenity plantings. The authors do not discuss how to integrate these data into analyses and public outreach.

Finally, Mason et al. recognize that many other factors strongly influence stakeholders’ willingness to support invasive species control programs, especially the level of trust and strength of relationships between bioinvasion program staff and stakeholders.

Also, they suggest topics for future research: assessing how well forecasting models are integrated with  communications with stakeholders; how qualitative and quantitative research methods in different fields might support one another; and empirical tests to measure the relative effects on social license of a) involving stakeholders in developing models, b) using forecasts to assess the consequences of different management decisions and, c) the usefulness of different methods for incorporating scientific information in stakeholder engagement.

SOURCE

Mason, N.W.H., Kirk, N.A., Price, R.J. et al. Science for social license to arrest an ecosystem-transforming invasion. Biol Invasions 25, 873–888 (2023). https://doi.org/10.1007/s10530-022-02953-w

see also https://www.doc.govt.nz/nature/pests-and-threats/weeds/common-weeds/wilding-conifers/

Posted by Faith Campbell

What do YOU think about the role “social license” plays in US invasive species programs? We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org


 

Help Fight for $$ to Protect Forests

Help Fight for Money to Protect Forests

This blog asks YOU!!! to support funding for some of the key USDA programs. This blog focuses on USDA’s Animal and Plant Health Inspection Service (APHIS). APHIS is responsible for preventing introduction of pests that harm agriculture, including forests; and for immediate efforts to eradicate or contain those pests that do enter. While most port inspections are carried out by the Department of Homeland Security Bureau of Customs and Border Protection, APHIS sets the policy guidance. APHIS also inspects imports of living plants.

Please help by contacting your members of the House and Senate Appropriations Committees. I provide a list of members – by state – at the end of this blog. APHIS is funded by the House and Senate Appropriations Subcommittees on Agriculture and Related Agencies. These Subcommittees have scheduled hearings on the topic and I’ve drafted written testimony for them. I expect CISP will be joined by additional members of the Sustainable Urban Forest Coalition in signing the testimony. You can add the crucial voice of constituent’s support.

I will blog soon about funding for USDA’s Forest Service (USFS) – I don’t yet have necessary information to suggest specific funding levels.

Your letter or email need be no more than a couple paragraphs. To make the case for greater funding, feel free to pick-and-choose from the information that follows. Your greatest impact comes from speaking specifically about what you know and where you live.

These are the specific dollar amounts we’d like you to ask for. The rationale for each is below.

Appropriations for APHIS programs (in $ millions)

ProgramFY 2022 (millions)FY 2023FY 2024 Pres.’ request Our ask
Tree & Wood Pest$61$63$64$65 M
Specialty Crops$210$216$222$222 M
Pest Detection$28$29$30$30 M
Methods Development$21$23$23$25 M

The Costs of Introduced Pests

Introduced pests threaten many forest products and services benefitting all Americans, including wood products, wildlife habitat, carbon sequestration, clean water and air, storm water management, lower energy costs, improved health, aesthetic enjoyment, and related jobs. Already, the 15 most damaging non-native pests threaten at least 41% of forest biomass in the “lower 48” states. In total, these 15 species have caused an additional annual conversion of live biomass to dead wood at a rate similar in magnitude to that attributed to fire (5.53 TgC per year for pests versus 5.4 to 14.2 TgC per year for fire) [Fei et al.; full citation at end of blog; see also earlier].

tanoaks killed by SOD; Oregon Department of Forestry photo

These pests also impose significant costs that are borne principally by municipal governments and homeowners. As more pests have been accidentally introduced over time, these costs have risen. A study published last year [Hudgins et al.] projected that by 2050 1.4 million street trees in urban areas and communities will be killed by introduced insect pests. Municipalities on the forefront include Milwaukee and Madison Wisconsin; the Chicago area; Cleveland; and Baltimore, Towson, and Salisbury, Maryland. Removing and replacing these trees is projected to cost cities $30 million per year. Additional urban trees – in parks, on homeowners’ properties, and in urban woodlands – are also expected to die and require removal and replacement.

Pathways of Introduction

Tree-killing pests are linked to the international supply chain. Many pests—especially the highly damaging wood-borers like emerald ash borer, Asian longhorned beetle, polyphagous and Kuroshio shot hole borers, and redbay ambrosia beetle—arrive in inadequately treated crates, pallets, and other forms of packaging made of wood. Other pests—especially plant diseases like sudden oak death and sap sucking insects like hemlock woolly adelgid—come on imported plants. Some pests take shelter, or lay their eggs, in or on virtually any exposed hard surface, such as steel, decorative stone, or shipping containers.

infested wood from a crate; Oregon Department of Agriculture photo

Wood Packaging

Imports from Asia have historically transported the most damaging pests, e.g., Asian longhorned beetle, emerald ash borer, redbay ambrosia beetle, and the invasive shot hole borers. For decades goods from Asia have dominated imports. As of February 2022, U.S. imports from Asia were running at a rate of 20 million shipping containers per year. A recent analysis [Haack et al.; see also here] indicates that at least 33,000 of these shipping containers, perhaps twice that number, are carrying a tree-killing pest. These facts have led scientists to project [Leung et al.] that by 2050, the number of non-native wood-boring insects established in the US could triple. Hudgins et al. say the greatest damage would occur if an Asian wood-boring insect that attacks maples or oaks were introduced. Such a pest could kill 6.1 million trees and cost American cities $4.9 billion over 30 years. The risk would be highest if this pest were introduced to the South – and U.S. southern ports are receiving more direct shipments from Asia after the expansion of the Panama Canal in 2016. https://www.nivemnic.us/?m=202207

After introduction of the ALB, APHIS acted to curtail further introductions in wood packaging from China. First – in 1998 – APHIS required China to treat its wood packaging. Second, it worked with foreign governments to develop the International Standard for Phytosanitary Measures (ISPM) #15. The U.S. and Canada began phasing in ISPM#15 in 2005 with full implementation in 2006. Under ISPM#15, all countries shipping goods to North America must treat their wood packaging according to specified protocols with the goal of “significantly reducing” the risk that pests will be present.

However, as I have often blogged [see blogs under “wood packaging” category on this site] ISPM#15 has fallen short. Haack et al. found that as recently as 2020, 0.22% [1/5th of 1 percent] of the shipping containers entering the U.S. were infested by a tree-killing insect. This equates to tens of thousands of containers harboring tree-killing insects.

Worse, the data indicate that our trade partners’ compliance with the rules has deteriorated; the “approach rate” of pest-infested wood packaging fell in 2005-2006, but has since gone back up.

The most troubling offender is China. Although required since 1998 to treat its wood packaging, China consistently has one of the highest pest approach rates: it was 0.73% [or ¾ of 1%] during the 2010- 2020 period. This is three times the global average for the period. Since China supplied 40.7% of U.S. imports in 2022 [Szakonyi], or 5,655,000 containers. Thus China alone might be sending to the U.S. 30,000 containers infested with tree-killing insects. These pests threaten our urban, rural, and wildland forests and reduce forest productivity, carbon sequestration, the rural job base, water supplies and quality, and many other ecosystem services. 

ISPM#15 falls short at the global level. The fact that a pallet or crate bears the mark indicating that it complies with ISPM#15 has not proved to be reliable.

You might ask your Member of Congress or Senators to ask APHIS what steps it will take to correct the problem of Chinese non-compliance. (Remind him or her that that the Asian longhorned beetle, emerald ash borer, and many other insects of so-far lesser impact were introduced in wood packaging from China.

Asian longhorned beetle

Remind them also that the Department of Homeland Security’s Bureau of Customs and Border Protection has twice enhanced its enforcement of wood packaging rules. In 2017 it began penalizing importers of non-compliant wood packaging under Title 19 United States Code (USC) §1595a(b) or under 19 USC §1592. In 2021, it incorporated the wood packaging requirements into its voluntary C-TPAC program.)  

You might also urge them to ask APHIS what steps it is taking at the global level to improve the efficacy of ISPM#15 – or to replace it if necessary to ensure that pests are not being introduced.

spread of beech leaf disease

Imported Plants (“Plants for Planting”)

Some pest types—especially plant diseases like sudden oak death and sap-sucking insects like hemlock woolly adelgid—come on imported plants. The U.S. imported about 5 billion plants in 2021 [MacLachlan]. Recent introductions probably via this pathway include several pathogens — Phytophthoras, rapid ʻōhiʻa death in Hawai`i, beech leaf disease (established from Ohio to Maine), and boxwood blight. Insects have also been introduced on imported plants recently; one example is the elm zigzag sawfly (present in North Carolina, Virginia, and New York and Ontario). https://www.nivemnic.us/?p=4115

An analysis of data from 2009 [Liebhold et al.] found that approximately 12% of plant shipments were infested by a pest. This pest approach rate is more than 50 times higher than the 0.22% approach rate for wood packaging. APHIS has adopted several changes to its phytosanitary system for imported plants in the decade since 2009. A few studies have been published, but they have focussed on insects and excluded pathogens. We have noted that pathogens continue to be introduced via the plant trade. Therefore, please ask your Member or Senators to ask APHIS to facilitate an independent analysis of the efficacy of the agency’s current phytosanitary programs to prevent introductions of pests on important plants, with an emphasis on introductions of plant pathogens.

APHIS is responsible for preventing spread of the SOD pathogen, Phytophthora ramorum, through trade in nursery plants. In recent years California has had few detections in nurseries and little expansion in forests – but the situation suggests that this good news is probably more the result of the drought than of program efficacy. In cooler, wetter conditions in Oregon and Washington, detections in nurseries and alarming detections in the forest or plantings continue.

In 2022, the APHIS SOD Program supported detection and regulatory activities in 25 states. P. ramorum was detected at 18 establishment, 12 of which were first-time detections. The California nursery regulatory program – which is funded by APHIS – saw reduced funding in 2022. We think these cuts are unwise since this year’s very wet winter will probably lead to a new disease outbreaks. Programs in Oregon and Washington continue to detect infestations in additional retailers brought in by plants bought from other nurseries. Washington responded to four separate “trace forward” incidents, one involving more than 160 residential sites. Clearly, the federal-state program is not succeeding in eradicating P. ramorum from nurseries. Please suggest that your Congressperson and Senators ask APHIS what steps it is taking to improve the efficacy of the SOD program.

SOD-infected rhodoendron on plants in Indiana; photo by Indiana Department of Natural Resources

In the East, P. ramorum was found in three of 65 streams sampled in 10 states in 2022 (reaching across the Southeast from Mississippi through North Carolina, plus Texas, Maryland, Pennsylvania, and Illinois). One stream is troubling: a first-time detection in South Carolina, with no obvious nursery source. Since stream sampling began, P. ramorum has been detected from eight streams in four states, Alabama, Mississippi, North Carolina, and now South Carolina. The pathogen has been present in some of these streams for more than 10 years.

Oregon faces particularly high risks. Three of the four known strains of P. ramorum are established in Oregon forests. One of them, the EU1 lineage, is more aggressive than the NA1 clonal lineage already present in forests. In addition, the EU1 strain might facilitate sexual reproduction of the pathogen, thus exacerbating Oregon’s struggle to contain the disease.

As we know, introduced pests do not stay in the cities where they first arrived — they spread! Often that spread is facilitated by our movement of firewood, plants, or outdoor household goods such as patio furniture.

The beech trees so important to wildlife conservation in the Northeast are under attack by two pathogens and at risk to an insect. Most alarming is the spread – in a dozen years! — of beech leaf disease DMF from Ohio to Maine. A leaf-feeding weevil is spreading south in eastern Canada. Please suggest that your Member or Senators to ask APHIS what steps it is taking to prevent the weevil’s introduction to the U.S.

‘Ōhi‘a trees make up 80% of the biomass of forests in both wet and dry areas of the Hawaiian archipelago. It is under attack by two diseases caused by introduced pathogens first detected in 2010. ‘Ōhi‘a forests support more threatened and endangered species than any other forest system in the U.S. They also play a uniquely important role in providing other ecosystem services, including water supplies.

Asking for the Money Pest Problems Deserve


To respond effectively to these pests and to the others that will be introduced in coming years, the key APHIS programs identified above must have adequate funds. The funding levels I request – and hope you will support – are lower than I would wish, but everyone expects the Congress to refuse significant increases in funding (see table at beginning of this blog).

The Tree and Wood Pests account supports eradication and control efforts targeting principally the ALB and spongy (= gypsy) moth. Eradicating the ALB normally receives about two-thirds of the funds. The programs in Massachusetts, New York, Ohio, and South Carolina must continue until eradication succeeds.

Oregon detected the EAB in 2022. Although the state and Portland have been preparing for a decade for this eventuality, there will still be significant impacts. Four percent of Portland’s street trees are ash – more than 9,000 trees. Young ash constitute three percent of young trees in parks. Loss of Oregon’s ash will also have severe ecosystem impacts. In Willamette Valley wetlands, ash constitutes up to 100% of the forest trees. Washington and California are also concerned. Indeed, the Hudgins study identified Seattle and Takoma as likely to lose thousands of ash trees. The numerous ash in riparian forests, windbreaks, and towns of North Dakota are also at risk since the EAB is established in South Dakota, Minnesota, and Manitoba.

APHIS manages damaging pests introduced on imported plants or other items through its Specialty Crops program. The principal example is its efforts to prevent spread of the SOD pathogen through the interstate trade in nursery plants. We noted above that this program is not as successful as it should be. We support the Administration’s request for $222 million; however, you might suggest that your Member or Senator urge APHIS to allot adequate funding under this budget line to management of SOD, rapid ʻōhiʻa death pathogens in Hawai`i, and beech leaf disease and elm zig-zag sawfly in the East.

The Pest Detection program is key to the prompt detection of newly introduced pests that is critical to successful pest eradication or containment. The “Methods Development” program enables APHIS to improve development of essential detection and eradication tools.

The Administration’s request include a $1 million emergency fund. This is far below the level needed to respond when a new pest is discovered. Funding constraints have hampered APHIS’ response to past pest incursions.

Please note that many of the members of the Agriculture Appropriations Subcommittee are from states where non-native pests are probably not top of mind. It is important that everyone that knows about these threats communicate with your Member/Senators!!

Members of House or Senate Subcommittees that Fund APHIS

(Names of Senators are italicized)

STATEMEMBERAPHIS APPROPHOUSESENATE
AKLisa Murkowski  X
ALJerry Carl Katie BrittXX  X
CalifBarbara Lee David Valadao Josh Harder Diane FeinsteinX X   XX X X        X
FLDebbie Wasserman Scultz Scott FranklinX XX X 
GASanford BishopXX 
IDMike Simpson X 
ILLauren UnderwoodXX 
KSJerry MoranX X
KYMitch McConnellX X
LAJulia Letlow Ashley HinsonX XX X 
MDAndy Harris Chris Van HollenXX    X
MEChellie Pingree Susan CollinsX XX  X
MIJohn Moolenaar Gary PetersX Xx  X
MNBetty McCollumXX 
MSCindy Hyde-SmithX X
MTJon Tester Ryan ZinkeX    XX
NBDeb Fischer  X
NDJohn HoevenX X
NMMartin HeinrichX X
NVMark Amodei X 
OHMarcy KapturXX 
ORJeff MerkleyXXX
PAGuy ReschenthalerXX 
RIJack Reed  X
TXMichael Cloud Jake EllzeyXX X 
UTChris Stewart X 
VABen ClineXX 
WADan Newhouse Derek KilmerXX X 
WVShelly Moore Capito Joe Manchin  X X X
WIMark Pocan Tammy BaldwinX XX  X

SOURCES

Fei, S., R.S. Morin, C.M. Oswalt, and A.M. 2019. Biomass losses resulting from insect and disease invasions in United States forests. PNAS August 27, 2019. Vol. 116 No. 35  17371–17376

Haack R.A., J.A. Hardin, B.P. Caton and T.R. Petrice .2022. Wood borer detection rates on wood packaging materials entering the United States during different phases of ISPM#15 implementation and regulatory changes. Front. For. Glob. Change 5:1069117. doi: 10.3389/ffgc.2022.1069117

Hudgins, E.J., F.H. Koch, M.J. Ambrose, and B. Leung. 2022.  Hotspots of pest-induced US urban tree death, 2020–2050. Journal of Applied Ecology

Leung, B., M.R. Springborn, J.A. Turner, and E.G. Brockerhoff. 2014. Pathway-level risk analysis: the net present value of an invasive species policy in the US. Front Ecol Environ 2014; doi:10.1890/130311

Liebhold, A.M., E.G. Brockerhoff, L.J. Garrett, J.L. Parke, and K.O. Britton. 2012. Live Plant Imports: the Major Pathway for Forest Insect and Pathogen Invasions of the US. Frontiers in Ecology.

MacLachlan, M.J., A. M. Liebhold, T. Yamanaka, M. R. Springborn. 2022. Hidden patterns of insect establishment risk revealed from two centuries of alien species discoveries. Sci. Adv. 7, eabj1012 (2021).

Szakonyi, M. 2023. Sourcing shift from China pulls US import share to more than a decade low.

One State’s Program Illustrates Importance of Federal Funding

Dead ash along Mattawoman Creek in 2019; Mattawoman Creek is a Maryland tributary of the Potomac River, hence of the Chesapeake Bay. Photo courtesy of Leslie A. Brice

In this blog I describe one state’s forest health efforts – Virginia. The pertinent lesson is the importance of external funding, especially that provided by USFS Forest Health Protection program, in supporting states’ efforts. Is your state’s forest health program as dependent upon federal funding as Virginia’s is? If so, there is a role for everyone: lobby your Congressional representative and senators to increase funding for this program!

I have based most of this blog on the Virginia Department of Forestry’s annual report for 2022.

Forests grow on more than 16 million acres in Virginia, or 62% of the Commonwealth’s land area. Eighty percent of these forests are hardwood or hardwood-pine. They break down as follows: 61% oak-hickory; 11% oak-pine; 5% bottomland hardwood; and 2% maple-beech-birch. A fifth of the forest is pine, composed of pine plantation (14%) and natural pine (7%). The long term trend is growth, especially among hardwoods.

The report devotes much of its attention to the agency’s programs to advise private landowners (individuals own 80% of the Commonwealth’s forestland); fire management (including prescribed burns); and state and federal conservation programs (e.g., easements). A major program shares reforestation costs on harvested pine lands. In 2022, this program assisted reforestation practices on 74,702 acres. Virginia has an impressive tree-raising program. VDOF grows more than 40 species, including longleaf and shortleaf pine, several spruce species, and dozens of hardwoods. The aim is to provide stock suited for the Commonwealth’s soils and climate. Many of the hardwood species are grown from acorns and seeds collected and donated by volunteers.

VDOF also helps to protect and improve the Commonwealth’s water quality through tree planting and sound forest management. VDOF has an unusual responsibility: enforcing the Virginia Silvicultural Water Quality Law.

The report also summarizes several urban and community forestry programs focused on education, community engagement, tree selection, and grants for tree planting to ensure canopy retention & management.

Forest Health – Importance of Federal Funding

Spongy Moth

Slightly over 1 million acres was mapped by aerial surveys in FY22. I believe the funding for these surveys came largely from the USFS. The surveys detected heavy to moderate defoliation by the spongy moth on 24,493 acres (almost twice the area detected in FY21). The spongy moth infestation is primarily in counties on the western side of the state, in the mountainous region, which has the highest densities of oaks and other hardwoods.

Spotted Lanternfly

The spotted lanternfly (SLF) was detected in Virginia early – in 2018 in Winchester at the northern end of the Shenandoah Valley. Winchester is connected to central Pennsylvania by Interstate 81, so rapid movement of SLF to Virginia from outbreaks slightly to the east of I-81 in Pennsylvania doesn’t surprise me. SLF has been spreading south along the mountains and over the Blue Ridge to Loudoun and Fairfax counties (in 2022). Fairfax County has announced a four-year, $200,000 effort to try to slow SLF spread by eradicating high densities of its preferred host, Ailanthus, from two county parks in the far south and north ends of the county. Ailanthus removal requires not just cutting the trees, but applying herbicide to prevent sprouting from the roots. This work is funded by the county, the local park authority and a $20,000 grant from the regional energy company, Dominion Energy Charitable Foundation.

Emerald Ash Borer

Virginia has six species of ash: white and green (both common), and smaller populations of black, blue, pumpkin and Carolina. EAB is now confirmed in 84 counties – most of the Commonwealth except the far southeast. The Department of Forestry treats 130 – 150 trees per year – half or more on state lands. At least in FY21, the funding came from federal sources. The report also notes outreach efforts at two minor league baseball games. Virginia recently adopted a priority of protecting the Chesapeake Bay watershed by promoting tree planting in riparian forest buffers. The EAB threatens this goal; see the photo (at top) of ash mortality along a Maryland tributary of the Bay. In 2021, EAB was detected in Gloucester County – a peninsula east of the York River that has Bay shoreline on the eastern side, tributary on the west (see photo).

Gloucester Point – Virginia Institute of Marine Sciences “living shoreline”; EAB was detected in Gloucester County in 2021, threatening riparian areas. Photo courtesy of the Chesapeake Bay Program

Threats to Beech

Beech bark disease is present in the western mountainous parts of the Commonwealth. One new county – Augusta – was detected in 2022. Three other counties are infested with the scale, but the fungal pathogen has not yet been detected. The alarming new threat, beech leaf disease, was detected in Prince William County in 2021. In 2022, it was confirmed in neighboring Fairfax County. The source of funding is not specified.

beech in a typical northern Virginia second-growth forest; photo by F.T. Campbell

Laurel Wilt Disease

Sassafras; photo by David Moynihan

I am pleased that the Commonwealth is paying attention to laurel wilt disease, which has been spreading north on sassafras. The closest outbreaks are in Tennessee, to the southwest of Virginia. The Commonwealth hosted a detection training program attend by 26 participants from six agencies from three states. The report does not specify the source of the funding.

Southern Pine Beetle

Virginia has also utilized funding from the USFS FHP program to manage the southern pine beetle. Since the program’s inception in 2004, Virginia has thinned pines on more than 70,000 acres, including 4,240 acres in FY22.

Invasive Plants

USFS FHP invasive species grants funded control treatments of invasive plants on somewhat less than 1,300 acres of state lands. Different figures on different pages of the report cause confusion. However, it is clear that nearly all the funds came from the USFS FHP program. Ailanthus was the main target; other species mentioned are privet, mimosa, autumn olive and Miscanthus.

State Funding of Conservation Initiatives; Will They Continue?

While the state’s government was controlled by Democrats, the governor and state legislature launched new programs with broader conservation goals. It is unclear whether they will continue now that Republicans have won the governorship and control of the House of Delegates.

Among the programs enjoying increased funding from the state budget during the current two-year cycle are

  • Efforts to restore depleted populations of two groups of tree taxa, shortleaf and longleaf pines. The emphasis has shifted to longleaf pine: the number of projects and acreages rose from 220 acres in FY21 to 1,212 acres in FY22. Restoration of shortleaf pine forests was limited to slightly over 600 acres in both years.
  • Programs to improve management of hardwood stands. These projects included crop tree release, control of “invasive species” (I think probably targetting invasive plants), prescribed burning and commercial thinning. There were also several demonstration projects on state-owned lands, a small land-owner planning assistance program, and training of state foresters and private consulting foresters in hardwood management. Apparently these aspects had been largely ignored in the past.
  • Creation of a dedicated Watershed program focused on increasing riparian forest buffers. This section of the report does not mention the threat posed by loss of ash to the emerald ash borer (EAB) [see EAB section above]
  • Urban forestry projects, many linked to protecting surface and ground water (including Chesapeake Bay watershed).

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

see also the article about beech leaf disease in the mid-Atlantic region written by Gabe Popkin; posted here

Imports from China down slightly, but high pest risk continues

I have blogged often about the pest risk of wood packaging associated with imports from Asia – especially China – and the shift in that risk arising from import volumes and ports at which they are arriving (increasing volumes entering country at ports along Atlantic and Gulf coasts). [See blogs posted on this site, under the “wood packaging” category (listed below the archives by date).] As noted, U.S. imports from Asia are at all-time highs: in the first three months of 2022, they reached 1.62 million TEU (shipping containers measured as twenty-foot equivalents). This was 31.1% higher than in the same period in pre-pandemic 2019 (Mogelluzzo, B. April 22, 2022).

The most recent information (Szakonyi, M. 2023) confirms that U.S. importers are shifting suppliers to countries other than China, primarily because of lengthy shutdowns in Chinese factories linked to the “0 COVID” policy and some U.S. restrictions and tariffs. Over 2022 (full year), China – including Hong Kong – supplied 40.7% of U.S. imports. This is still a huge proportion, but lower than in 2021, when it was 42.4%. The Journal of Commerce calculates that the number of containers coming from China fell by 435,000. At the current rate of infestation in wood packaging from China calculated by Haack et al. 2022, that might mean about 1,200 fewer containers from China with infested wood packaging entering the U.S.

[Explanation of calculations: I divided 435,000 by 2 to convert 20-ft TEU into 40-ft containers that CBP encounters at the ports; multiplied the result by 0.75 – based on the decade-old Meissner estimate of % of containers that have SWPM; then multiplied the result by .0073 because that is infestation rate for China during 2010-2020 period]

This might be progress. China continues to have a terrible record of non-compliant wood packaging 23 years after U.S. and Canada instituted phytosanitary requirements. According to Haack et al. (2022), packaging from China made up 4.6% of all shipments inspected under the terms of their analysis, but 22% of the 180 consignments with infested wood packaging. Thus the proportion of Chinese consignments with infested wood is five times greater than expected based on their proportion of the dataset. The rate of wood packaging from China that is infested has remained relatively steady = 1.26% during 2003–2004, 0.73% during 2010 – 2020. And the insects present belong to the group that causes the greatest damage: longhorned beetles (Cerambycids). Indeed, 78% of beetles in this family that were detected were from China.

There is some good news: some types of goods likely to be enclosed in crates have decreased notably. The proportion of furniture and other home items imported from China has declined from 71.6% of all U.S. imports in 2010 to 52.6% in 2022. As Haack et al. (2022) found, crates are the type of wood packaging where wood pests are most commonly found. While crates constituted only 7.5% of the wood packaging inspected, they made up 29.4% of the infested packaging – or four times greater than their proportion of the dataset.

The pest risk might not be changing significantly, however, because some of the new suppliers are also in Asia. Vietnam’s share of U.S. imports rose from 8.2% to 8.7%. The types of goods most often imported from Vietnam included electronics, shoes, and apparel. The U.S. has already been invaded by insect-pathogen complexes native to Vietnam, Taiwan, and other parts of southeast Asia – e.g., redbay ambrosia beetle and laurel wilt; invasive shot hole borers and Fusarium disease.

U.S. imports from South Korea, mostly electronics and autoparts, climbed from 3.8% to 4.1%. Imports from India also saw a tiny increase – from 3.8% to 3.9%. These shipments were primarily apparel and iron and steel components. These goods prompt concern because wood packaging associated with heavy materials are often infested by insects (Eyre et al. 2018). The Haack et al. (2022) analysis found two interceptions of wood packaging from Vietnam, one from Korea, and three from India.

Besides, the Journal of Commerce notes that shifts in suppliers cannot go far. These countries’ manufacturing capacity and transportation infrastructure are far below those of China (Szakonyi, M. 2023).

In February 2023, U.S. imports from Asia continued to decline from record levels in 2021 and 2022 to 1.09 million TEU. This level still exceeds by 25% the 869,091 TEU recorded in March 2020, at the beginning of the COVID-19 shutdown (Mongelluzzo, March 17, 2023).

[Reminder: higher shares of imports from Asia are going to ports along the Atlantic and Gulf coasts – spreading the risk. See earlier blogs. In early March the Port of Savannah posted an advertisement to the on-line Journal of Commerce, crowing that by July it will complete straightening the river at the Garden City Terminal (the container terminal). This fix will enable Savannah to raise its annual container processing capacity by 1.5 million TEU, to 7.5 million.]

The most hopeful finding is that imports from Mexico jumped 19.2% in the first 11 months of 2022 compared to the same period in 2021. Importers have their reasons: a desire to buy from producers closer to the U.S. market. These motivations have nothing to do with the risk of forest pest introductions. However, we can rejoice because Mexico has greatly improved the pest-infestation rates of its exports since 2009. The rate fell from 0.29% in 2003-2004 to 0.04% in 2010-2020 (Haack et al. (2022).  

larval Asian longhorned beetle; Thomas Denholm, NJ Department of Agriculture; Bugwood

I remain outraged that U.S. agencies have not taken effective steps to deal with the nearly 25-year-long problem of Chinese noncompliance with our phytosanitary requirements. As I noted in my previous blog, link to blog 303 Customs and Border Protection officials are disappointed that their enhanced enforcement in 2017 and 2021 has not yet resulted in improved compliance.

I suggested that the U.S. and Canadian government agencies should penalize trade partners with high records of not complying with ISPM#15. Among steps they should consider are

  • U.S. and Canada should refuse to accept wood packaging from foreign suppliers that have a record of repeated violations – whatever the apparent cause of the non-compliance. Institute severe penalties to deter foreign suppliers from taking devious steps to escape being associated with their violation record.
  • APHIS and CBP and their Canadian counterparts should provide guidance to importers on which foreign treatment facilities have a record of poor compliance or suspected fraud – so they can avoid purchasing SWPM from them. I greatly regret that the death of Gary Lovett might put an end to the voluntary industry program he had been developing, described here.
  • Encourage a rapid switch to materials that don’t transport wood-borers. Plastic is one such material. While no one wants to encourage production of more plastic, the Earth is drowning under discarded plastic. Some firms are recycling plastic waste into pallets.

Haack et al. 2022 fully describes the methodology used, the structure of USDA’s Agriculture Quarantine Inspection Monitoring (AQIM) program, detailed requirements of ISPM#15, the phases of U.S. implementation, etc.  Also see the supplemental data sheet in Haack et al. (2022) that compares the methods used in each analysis.

SOURCES

Eyre, D., Macarthur, R., Haack, R.A., Lu, Y. and Krehan, H., 2018. Variation in inspection efficacy by member states of wood packaging material entering the European Union. Journal of Economic Entomology, 111(2), pp.707-715.

Haack RA, Hardin JA, Caton BP and Petrice TR (2022) Wood borer detection rates on wood packaging materials entering the United States during different phases of ISPM#15 implementation and regulatory changes. Frontiers in Forests and Global Change 5:1069117. doi: 10.3389/ffgc.2022.1069117

Meissner, H., A. Lemay, C. Bertone, K. Schwartzburg, L. Ferguson, L. Newton. 2009. Evaluation of Pathways for Exotic Plant Pest Movement into and within the Greater Caribbean Region. A slightly different version of this report is posted at 45th Annual Meeting of the Caribbean Food Crops Society https://econpapers.repec.org/paper/agscfcs09/256354.htm

Mongelluzzo, B. Q1 US imports from Asia show no slowing in consumer demand. Apr 22, 2022. https://www.joc.com/maritime-news/container-lines/q1-us-imports-asia-show-no-slowing-consumer-demand_20220422.html

Mongelluzzo, B. US imports from Asia hit three-year low in February: data. https://www.joc.com/article/us-imports-asia-hit-three-year-low-february-data_20230317.html

Szakonyi, M. 2023. Sourcing shift from China pulls US import share to more than a decade low. https://www.joc.com/article/sourcing-shift-china-pulls-us-import-share-more-decade-low_20230201.html

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Elm zigzag sawfly invades Eastern U.S.

The characteristic zigzag pattern Picture: Kelly Oten, NC State University.

Guest blog by Kelly Oten, NC State University

The elm zigzag sawfly [EZS; Aproceros leucopoda Takeuchi (Hymenoptera: Argidae)] is the newest invasive forest insect detected in the eastern US. The colloquially-used common name, currently going through the ESA common name approval process, is not only catchy, but perfectly describes this defoliator’s unique feeding damage. As EZS feeds on elm leaves, it weaves a zigzag pattern from the margin of the leaf towards the mid-vein.

An Expansive — and Quickly Growing – Range

Native to East Asia, the first confirmation of EZS in North America occurred in August 2020 in Québec, Canada when an iNaturalist user posted a photo showing the characteristic zigzag defoliation. The observer realized it was potentially EZS and emailed local entomologists in the province who visited the site, collected specimens, and obtained species confirmation through the Canadian Food Inspection Agency Entomology Lab (Martel et al. 2021). However, this detection was not actually the beginning.

Three months before the Canadian detection, the same defoliation pattern was observed in Frederick County, Virginia, USA. Observers suspected EZS, but no specimens were recovered and therefore identification could not be confirmed. A year later, the site was revisited and this time, bingo—specimens were present and confirmed as EZS. Subsequent surveys that summer led to detections in eight additional Virginia counties. At the same time, the telltale defoliation was observed in Lehigh County, Pennsylvania, USA, but no specimen could be recovered for confirmation. In 2022, EZS popped up more widely; four additional states confirmed EZS: Pennsylvania, North Carolina, Maryland, and New York.

map created by Kelly Oten, NCSU

Though new to North America, this insect has a history of invasiveness. First detected in Europe in 2003, it now occupies areas from the United Kingdom and France in the west, to Russia and Kazakhstan in the east (Ashikbayev et al. 2018, iNaturalist 2022).

The strange and unusual biology of elm zigzag sawfly

Like all Hymenopterans, EZS goes through four life stages: egg, larva, pupa, adult. Eggs are laid along leaf margins; after hatching, larvae feed on leaf foliage in a zigzag pattern towards the mid-vein. Older larvae consume the leaf more entirely, leaving behind the mid-vein and thicker lateral veins only. Before pupating, larvae spin a cocoon within which they pupate. Cocoons are seasonally dimorphic; summer pupae (which emerge as adults in 4-7 days) are net-like and attached to leaves or twigs. Overwintering pupae are solid-walled and found in leaf litter or soil. Interestingly, overwintering pupae are not just produced from the last generation of the year. Even early in the summer, overwintering pupae may develop alongside summer pupae. Adults are able to begin oviposition immediately; not only do they not need to feed, but they don’t need to find a mate either! EZS is parthenogenetic, meaning they reproduce without mating. In fact, no male EZS has ever been recorded and it’s believed the species is entirely female.

As elm zigzag sawfly larvae (bottom left on leaf) grow, they feed more wholly on elm leaves. Picture: Kelly Oten, NCSU

The entirety of this life cycle can last ~20-36 days when not overwintering. However, the voltinism of this pest is highly variable. Papp et al. (2018) recorded up to seven generations in a year on lab-reared colonies, but in nature in Europe, anywhere between two and six generations has been recorded (Blank et al. 2010, Mol and Vonk 2015). In Virginia, two generations were recorded in 2021 and 1 in 2022. It is unknown what factors play into the number of generations per year, but it’s clear that it’s highly variable. The ability of EZS to multiply rapidly and have multiple generations per year suggest large populations can build in a relatively short time. In fact, this was observed in North Carolina in 2022 and in Europe several times before. Large populations are capable of severe defoliation and may cause long-term impacts on tree health.

This collective life cycle description is based on Blank et al. 2010, Martel et al. 2021, Martynov and Nikulina 2017, and Wu 2006.

Spread

EZS has astonished many with how it seems to be popping up all over the place in such a short amount of time. Since 2020, it has been detected in five US states and at several sites along the St. Laurence River in the Canadian province. The adults are strong fliers, capable of spreading 45-90 km (~27-55 mi) per year (Blank et al. 2014). Given the fact they’re parthenogenetic, relatively small numbers can disperse to begin new populations. Of perhaps greater concern is the potential for long-range dispersal. In heavy infestations in North Carolina, cocoons were found not just attached to leaves and stems, but also non-living objects, suggesting a possible mechanism of long-range dispersal should they become attached to vehicles or other objects transported long distances. In addition, EZS damage ranges from minor to severe defoliation. When populations are low and feeding is minor, it’s less likely to be detected unless intentional surveys are conducted. This cryptic nature might suggest it’s in more places than we are currently aware.

An elm zigzag sawfly cocoon attached to a fence post.
Picture: Kelly Oten, NCSU

So, what’s the big deal?

In short, we don’t know yet. Generally speaking, defoliation by insects causes little long-term harm to tree health but severe and/or repeated defoliation can weaken or sometimes kill a host. In Europe, trees severely defoliated by EZS are typically able to re-leaf but may suffer branch dieback and/or reduced growth (Blank et al. 2010, Zandigiacomo et al. 2011). Also of note, EZS is attacking elm, an already-threatened tree due to widespread mortality cause by Dutch elm disease in the 1900s. Defoliation by EZS could further weaken infected trees or, at the very least, present an additional threat for remaining elms (Blank et al. 2010). While it seems aesthetic damage will be the primary concern with EZS, the potential for long-term tree health impactsin the US is uncertain and should be investigated. For now, anyone that finds EZS or its characteristic defoliation pattern are encouraged to report it to their respective state agriculture or forestry agency.

A row of winged elm (Ulmus alata) in NC were severely defoliated by elm zigzag sawfly.
Picture: Kelly Oten, NCSU

[See Faith’s earlier blog about the zigzag sawfly here.]

References

Ashikbayev, N. Z., N. S. Mukhamadiyev, G. Z. Mengdibayeva, M. B. Temirzhanov, and N. K. Kuanyshbaev. 2018. Development of forest entomology in Kazakhstan, pp. 42–47.  In T. I. Espolov, K. M. Tireuov, E. I. Islamov, S. B. Baizakov, K. T. Abayeva, E. Z. Kentbaev, and B. A. Kentbaeva (eds.), Actual problems of sustainable development in forestry complex, vol. 2. Aitumar Publishing, Almaty, Kazakhstan.

Blank, S. M., H. Hara, J. Mikulás, G. Csóka, C. Ciornei, R. Constantineanu, I. Constantineanu, L. Roller, E. Altenhofer, T. Huflejt, and G. Vétek. 2010. Aprocerosleucopoda (Hymenoptera, Argidae): an East Asian pest of elms (Ulmus spp.) invading Europe. Eur. J. Entomol. 107: 357–367.

Blank, S. M., T. Köhler, T. Pfannenstill, N. Neuenfeldt, B. Zimmer, E. Jansen, A. Taeger, A.D. Liston. 2014. Zig-zagging across Central Europe: recent range extension, dispersal seed and larval hosts of Aprocerosleucopoda (Hymenoptera, Argidae) in Germany. J. Hymenopt. Res. 41: 57-74.

iNaturalist. Available from https://www.inaturalist.org. Accessed August 2022.

Martel, V., O. Morin, S. Monckton, C. Eiseman, C. Béliveau, M. Cusson, and S. Blank. 2021. Elm zigzag sawfly, Aproceros leucopoda (Hymenoptera: Argidae), recorded for the first time in North America through community science. Can. Entomol. 154: E1.

Martynoz, V. V., and T. V. Nikulina. 2017. Population surge of zigzag elm sawfly (Aproceros leucopoda (Takeuchi, 1939): Hymenoptera: Argidae) in the Northern Ciz-Azov Region. Russ. J. Biol. Invasions 8: 25-34.

Mol, A. W. M., and D. H. Vonk. 2015. De iepenzigzagbladwesp Aproceros leucopoda (Hymenoptera: Argidae), een invasieve exoot in Nederland. Entomol. Ber. 75: 50-63.

Papp, V., M. Ladányi, and G. Vétek. 2018. Temperature-dependent development of Aproceros leucopoda (Hymenoptera: Argidae), an invasive pest of elms in Europe. J. Appl. Entomol. 142: 589-597.

Wu, X. Y. 2006. Studies on the biology and control of Aproceros leucopoda. Plant Prot. 32: 98-100.

Zandigiacomo, P., E. Cargnus, and A. Villani. 2011. First record of the invasive sawfly Aproceros leucopoda infesting elms in Italy. Bull. Insectology 64: 145-149.

Protecting ash & hemlock – latest information

nearly dead ash in Shenandoah National Park; photo by F.T. Campbell

I participated in the annual USDA Interagency Invasive Species Research Forum in Annapolis in January 2023; as usual, I learned interesting developments. I focus here on updates re: efforts to protect ash and hemlock

Hopeful Developments re: countering EAB to protect ash

There are hopeful results in both the biocontrol and resistance breeding programs. The overall goal is to maintain ash as a viable part of the North American landscape.

Biocontrol

Juli Gould (APHIS) reminded us that the agency began a classical biocontrol program targetting emerald ash borer (EAB) in 2003 – only a year after EAB had been detected and much earlier than is the usual practice. [Thank you, former APHIS PPQ Deputy Administrator Ric Dunkle!] By 2007 scientists had identified, tested, and approved three agents; a fourth was approved in 2015.

Nicole Quinn (University of Florida) stressed that the egg prarasitoid, Oobius — if it is effective — could prevent EAB from damaging trees. However, it is so small that it is very difficult to sample. One small study demonstrated that Oobius will parasitize EAB eggs laid in white fringe trees (Chionanthus virginicus) as well as in ash. This is important because it means this secondary host is not likely to be a reservoir of EAB.

The numbers

According to Ben Slager (APHIS), more than 8 million parasitoids have been released at 950 sites since the program began in 2007. These releases have been in 418 counties in 31 states, DC, and four Canadian provinces. Still, these represent just 28% of infested counties. Parasitoids have been recovered in 21 states and two provinces.

Rafael de Andrade (University of Maryland) specified that these releases included more than 5 million Tetrastichus in 787 sites; ~2.5 million Oobius in 828 sites in 30 states; ~500,000 Spathius agrili – lately only north of the 40th parallel. Releases of Spathius galinae began in 2015; so far ~ 470,000 in 395 sites.

 Impact

Several presenters addressed questions of whether the agents are establishing, dispersing, and – most important – improving ash survival. Also, can classical biocontrol be integrated with other management techniques, especially use of the pesticide emamectin benzoate.

Dispersal

Several studies have shown that the four biocontrol agents disperse well (with the caveat that Oobius is very difficult to detect so its status is much less certain).

Implementation considerations

De Andrade found that the longer the delay between the date when EAB was detected and release of Oobius, the less likely Oobius will be recovered. Tetrastichus surprised because the higher the numbers released, the fewer were recovered. He could determine no association between recovery of S. agrili and variations in release regime [numbers released; delay in releasing biocontrol agents; or frequency of releases]. He said it is too early to assess Sp. galinae since releases began only in 2015, but he did see expected relationship to propagule pressure – the more wasps released, the higher the number that were recovered. Sp. galinae did surprise in one way: it seemed to perform better at lower latitudes. De Andrade noted he was working data from less than half of release sites. He asked collaborators to submit data!!!!

Initial signs of ash persistence and recovery 

Claire Rutledge (Connecticut Agriculture Experiment Station) determined that

  • More large trees were surviving in plots where the biocontrol agents were released
  • EAB density was lower at long-invaded sites
  • Parasitism rates were similar across release age treatments and release/control plots

Gould focused on protecting saplings so they can grow into mature trees which could be sources of seeds to establish future generations. She noted that there are many “aftermath” forests across the northern United States – those dominated by ash saplings.

In Michigan, at a site of green ash, as of 2015 – 2021, EAB populations are still low, parasitism rate by Tetrastichus and S. galinae high. The percentage of saplings that remained healthy was greater than 80%. There were similar findings in white ash in New York: very low EAB larval density; and more than 70% of ash saplings had no fresh galleries. Gould reported that Tetrastrichus impcts could be detected within three years of release.

So, EAB are being killed by the biocontrol agents combined with woodpecker predation; but in their fourth instar, after considerable damage to the trees.

downy woodpecker in Central Park, NYC. photo by Steven Bellovin, Columbia University

Jian Duan reported on two long-term studies in green & white ash in Michigan and New England. His team used the most labor-intensive but best approach to determine EAB larval mortality and the cause – debarking trees – to determine whether the EAB larva were parasitized, were preyed on by woodpeckers, or were killed by undetermined cause, such as tree resistance, disease, or competition. In Michigan, he linked a crash of EAB population in 2010 was caused by Tetrastichus; EAB tried to recover, but crashed again, due to S. galinae. EAB larval densities had been reduced to 10 / m2. Predation by abundant woodpeckers and the native parasitoid Atanycolus was also important.

In New England, EAB has also declined from 20-30 larvae /m2 to ~ 10 m2.

In Michigan, healthy ash with dbh of larger than 5 inches were much more plentiful in sites where parasitoids had been released. Their survival/healthy rate also was much higher in release sites but the difference declined as years passed. In New England there were growing numbers of healthy trees in 2021-22; (almost none in 2017). Duan conceded that he could not prove a direct link but the data points to recovery.

Tim Morris (SUNY-Syracuse) found that white ash saplings continued to die in large numbers, but the mortality rate was significantly below the rate in 2017. Canopy conditions varied; some trees that were declining in 2013 were recovering in 2017. Forty percent of “healthy” ash in 2013 continued recovering in 2021. Few living trees were declining; trees were either healthy or dead. He thinks probably a combination of genetics and presence of parasitoids explains which trees recover. Morris also reported some signs of regeneration.

beaver feeding on ash saplings, Fairfax County, Va;
photo by F.T. Campbell

At this point, I noted that in parts of northern Virginia, beavers have killed ash saplings. Morris reported finding the same in some sites in New York. Perhaps others have, also; my comment was greeted by laughter.

Theresa Murphy (APHIS) looked at integration of biocontrol and insecticide treatment in urban and natural sites. A study of black and green ash in Syracuse, NY Naperville, IL, and Boulder, CO found continued high parasitism by Tetrasticus and S. galinae and woodpecker attacks in trees treated with emamectin benzoate. Researchers could not detect Oobius. By 2020, most of the untreated trees had died but treated trees remained healthy.

Murphy has begun studying integration of biocontrol and pesticides in green and black ash forests. The goal is to protect large trees to ensure reproduction; the biocontrol agents do not yet protect the large trees. This is especially important for black ash because it declines very quickly after EAB invades. Sites have been established in New York, through collaboration with New York parks, Department of Environmental Conservation, and the Mohawk tribe. She is still looking for sites in Wisconsin – where EAB is spreading more slowly than expected.

1 of the infested ash in Oregon; photo by Wyatt Williams, ODF

Max Ragozzino of the Oregon Department of Agriculture reported on imminent release of biocontrol agents targetting the recently detected outbreak there. I am encouraged by the rapid response by both the state and APHIS.

EAB resistance in ash

Jennifer Koch (USFS) said the goal is not to produce populations where every seedling is fully EAB-resistant, but to develop populations of ash trees with enough resistance to allow continued improvement through natural selection while retaining sufficient genetic diversity to adapt to future stressors (changing climate, pests, diseases). The program has developed methods to quantify resistance in individuals.. Initial field selections of “lingering ash” were shown to be able to kill as many as 45 % of EAB larvae. Already green ash seedling families have been produced by breeding lingering ash parents.  This first generation of progeny had higher levels of resistance, on average, than the parent trees.  Each generation of breeding can increase the proportion of resistance. Although the bioassays to test for EAB-resistance are destructive (e.g., cutting and peeling to count numbers of surviving larvae), the potted ash seedling stumps can resprout. Once the new sprouts are big enough they are planted in field trials to correlate bioassay results with field performers.  Poor performers are culled; those with higher levels of resistance remain and become sources of improved seed.

To ensure preservation of local adaptive traits, this process must be repeated with new genotypes to develop many seed orchards from across the species’ wide range. To support this work, concerned scientists are building multi-partner collaborative breeding networks. These organizations provide ways for citizens and a variety of partners to engage through monitoring and reporting lingering ash, making land available for test planting, and helping with the work of propagation.

See Great Lakes Basin Forest Health Collaborative » Holden Forests & Gardens (holdenfg.org), Monitoring and Managing Ash (MaMA) – A citizen-science-driven program for conservation and mitigation (monitoringash.org), and TreeSnap – Help Our Nation’s Trees! for more information.

Resistance levels in some of the first generation progeny were high enough for use in horticulture, where it is important that trees can remain healthy in challenging environments (street trees, city parks, landscaping, etc.). Koch hopes to develop about a dozen cultivars comprising the best-performing trees, appropriate for planting in parts of Ohio, Michigan, Indiana, and Pennsylvania.   Local NGO partners are planting some of these promising genotypes in Detroit to see how they withstand EAB attack.

a black ash swamp; photo via Flickr

The threat to black ash is especially severe, and this species presents unique difficulties. While scientists found several seedlings from unselected seedlots had killed high levels of larvae, those deaths did not always result in better tree survival. Koch thinks the tree’s defense response becomes detrimental to tree by blocking transport of water and nutrients. She is working with experts in genomics and others, such as Kew Royal Botanic Gardens, to try to identify candidate trees for breeding programs.  The genomics work has been supported by APHIS and the UK forest research agency, DEFRA. Michigan and Pennsylvania have supported the breeding work. USFS Forest Health Protection has supported work with black and Oregon ash (see below) (J. Koch, USFS, pers. comm.).

Koch has also begun working with Oregon ash, in collaboration with the USFS Dorena Genetic Resource Center (located in Cottage Grove, Oregon) and other partners.

dead hemlock in Massachusetts; photo by Ian Kinahan,
University of Rhode Island

Hemlock woolly adelgid

Scientists are still trying to find the right combination of biocontrol, chemical treatments, and silvicultural manipulation.

For several years, hope has focused on two has been on two predatory beetles, Laricobius nigrinus and L. osakiensis. Scott Salom (Virginia Tech) reports that release of these beetles over the past 20 years has had a significant impact on HWA density and tree photosynthetic rate and growth. However, Laricobius aredifficult to rear and they attack only the sistens generation of the adelgid. Ryan Crandall (University of Massachusetts) reports it has been difficult to establish these beetles in the Northeast. He links this difficulty is caused by temporary drops in HWA populations after cold snaps.

Scientists now agree that need to find predators that attack HWA during other parts of its lifecycle. Hope now focuses on silverflies — Leucotaraxis argenticollis and Le. piniperda.  While both species are established in eastern North America, the clades in the east feed almost exclusively on pine bark adelgid, and have not begun attacking HWA. Biocontrol practitioners therefore collect flies in the Pacific Northwest for release in the east. Salom is increasing his lab’s capacity to rear silverflies and exploring release strategies.

Preliminary evidence indicates that the western clades of Leucotaraxis are establishing, although data are not yet definitive (Havill, USFS).

Detecting the presence of biocontrol agents presents several challenges. Tonya Bittner (Cornell) described efforts to use eDNA analysis for this. Some puzzles have persisted; e.g., at some sites, she detected eDNA but caught no silverflies. This raised the question of long eDNA associated with the original release might persist. Another problem is that the assay cannot separate the introduced western L. nigrinus from the native congener, L. rubus (which also does not feed on HWA). She continues efforts to improve this technique.

Others explored interactions of the biocontrol agents with insecticides. Salom is studying the impact of soil-applied insecticides on Laricobius populations, which aestivate in the soil. Preliminary results showed significant reduction in the beetle’s population under soil drench application but not under soil injection. He has not yet analyzed all the data.

Michigan is trying to prevent spread of HWA from five counties along the eastern shore of Lake Michigan (where HWA was introduced on nursery stock) to widespread hemlock forests in northern part of the state. Phil Lewis (APHIS) is studying persistence of systemic insecticides in hemlock tissues, particularly twigs and needles. The pesticides involved are imidacloprid, dinotefuran, and Olefin. He has found that pesticide levels are highest 18 – 22 months after treatment, then decline. They are significantly higher after trunk injection compared to bark spray or soil treatments. Imidacloprid had higher residues in twigs; dinotefuran in needles. This difference affects the likelihood of adelgids actually ingesting the toxin.

healthy hemlock in experimental gap; Jefferson National Forest, VA; photo by Bud Mayfield, USFS

Bud Mayfield (USFS) reported on his study of silvicultural strategies to support healthier hemlocks. While hemlocks normally thrive in shade, it has been determined that sunlight assists small trees  reducing HWA sufficiently to counter the tree’s leaf-level stress. Small sapling hemlocks grown in sunlight fix more carbon and convert it to growth in shoots and trunk diameter.

Mayfield found promising immediate suppression of HWA in large gaps in Georgia and Tennessee. By the third year the saplings were still growing, although their faster growth had attracted more HWA. These findings were less clear farther north in central Virginia and western Maryland – Mayfield thinks because HWA pressure there is lower. However, managers must maintain the gaps by cutting rapidly-growing competing woody species. He plans to test this strategy farther north in Pennsylvania. He is still trying to determine the optimal size of the gap.


Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Plant Diversity & Invading Insects: Key Relationship has Policy Applications

spotted lanternfly; photo by Stephen Ausmus, USDA; establishment facilitated by extent of invasion by its preferred host, Ailanthus

Seven coauthors (full citation at end of blog) compared various factors associated with numbers of invasive insect species in 44 land areas.These ranged from small oceanic islands to entire continents in different world regions, Liebhold et al. determined that the numbers of established non-native insect species are primarily driven by diversity of plants, including both native and non-indigenous. Other factors, e.g., land area, latitude, climate, and insularity, strongly affect plant diversity. Through this mechanism these factors affect insect diversity as a secondary impact.

Seven coauthors (full citation at end of blog) compared various factors associated with numbers of invasive insect species in 44 land areas.These ranged from small oceanic islands to entire continents in different world regions, Liebhold et al. determined that the numbers of established non-native insect species are primarily driven by diversity of plants, including both native and non-indigenous. Other factors, e.g., land area, latitude, climate, and insularity, strongly affect plant diversity. Through this mechanism these factors affect insect diversity as a secondary impact.

At large spatial scales [greater than 10 km2], regions supporting more diverse plant communities offer greater opportunities for herbivore colonization. Thus, plant diversity promotes invasion through the “facilitation effect”. Since most insects – including most of those introduced to naïve ecosystems – are herbivores, a greater number of possible foods is a clear advantage. Those insects that prey on herbivores benefit by plant diversity indirectly.

Non-native coral tree, Erythrina, in Hawai`i; photo by Forrest and Kim Starr; did wide planting of exotic Erythrina facilitate invasion by Erythrina gall wasp?

At smaller spatial scales, plant diversity might impair the ability of insects to locate hosts because of the “dilution effect”. I have been asking for decades why so few of the Eurasian insects established in eastern North America have not also established along the Pacific coast from Oregon into British Columbia. The region has a plant-friendly climate and almost every plant species from temperate climates is grown there in cultivation. Perhaps the non-native plants – while numerous enough to become invaders themselves – are still sufficiently scarce or dispersed to impair introduced insects’ locating an familiar host?

According to the Smithsonian Institution, Hawai`i has approximately 2,499 taxa of flowering plants and 222 taxa of ferns and related groups. The native flora of the United States includes about 17,000 species of vascular plants; at least 3,800 non-native species of vascular plants are recorded as established outside cultivation. I don’t know how many non-native plant species are in cultivation.

horticultural viburnum invading riparian forest in Fairfax County, VA. photo by F.T. Campbell; did the widespread presence of many non-native viburnum species facilitate establishment of the viburnum leaf beetle?

I note that this article appeared more than four years ago. However, its important findings do not appear to have been integrated into either policy formulation governing plant introductions or pest risk analysis applied to insects or pathogens that might be introduced. (Indeed, we probably need a separate analysis of whether fungi, oomycetes, nematodes, and other pathogens show the same association with plant diversity in the receiving environment.)

How do we – government agencies, academics, conservation organizations, plant industry representatives — use this information to help curtail introductions of plant pests? Can it be integrated into APHIS’ NAPPRA process?

SOURCE

Liebhold, A.M., T. Yamanaka, A. Roques, S. August, S.L. Chown, E.G. Brockerhoff & P. Pyšek. 2018. Plant diversity drives global patterns of insect invasion. www.nature.com/scientificreports/

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Saving Old Trees is Key to CO2 Storage

The Old Man – a giant ash tree in Wytham Woods; photo from https://theoldmanofwytham.com/2018/11/29/ash-dieback-in-wytham-woods/

I campaign for protecting trees – especially trees growing to their natural capacity in the habitats in which they have evolved. I focus on the threat to these trees from non-native insects and various pathogens (fungi, nematodes …). I have often expressed my distress because others appear to place a low priority on this goal. I have also asked whether protecting trees might be given a higher priority by more decision-makers if they recognize trees’ vitally important role in countering climate change.

For this reason, I have blogged several times about studies examining the role trees play in sequestering carbon — see here & here & here.

A new study demonstrates that protecting large, old trees – almost by definition in their natural environment – is vitally important. Planting new, small, trees is helpful but cannot substitute for the venerable trees.

Calders and colleagues (full citation at the end of the blog; open access!) have used new technology to update assessments of the amount of carbon sequestered in trees. They conducted their study in a temperate hardwood forest – Wytham Woods, a typical broadleaf temperate forest in Oxfordshire, southern Great Britain. [Wytham Woods is also the site of two of the “Inspector Morse” mysteries –  “Secret of Bay 5B” and “A Way Through the Woods”.]

They found that these trees sequester 1.77 times more carbon in their above-ground biomass (AGB) than previously believed based on currently-used models.

One consequence of their findings is that countries using the standard assessment method (which was developed by Robert Bunce in 1968) are reporting inaccurate carbon sequestration estimates to the United Nations per the Paris climate accords. (Calders et al. believe that calculations for conifer species are probably more accurate than those for deciduous forests.)

A second consequence is that death of large trees – from whatever cause – will result in greater loss of carbon storage than previously thought.

Old v. New Measurements

The underlying Bunce dataset and algorithm applied in most European biomass estimates were based on a small sample: 200 trees belonging to five taxa growing in one forest area. The models were derived by cutting down trees and weighing them to determine tree biomass. Smaller trees were used because they are easier to process. The scientists then extrapolated the biomass of bigger trees based on the assumption that correlation between tree size and mass is independent of tree size. This assumption has rarely been tested because of the difficulty and expense of carrying out this type of destructive sampling.

The higher estimates of carbon storage in Calders et al. arise in part from the bias towards small trees in calibration of the earlier models. Calders et al. found that trees do not follow a size-invariant scaling relationship, particularly at larger size; it is important to include crown area. Thus, Calders and colleagues calculated a higher sequestration rate for trees in Wytham Woods that fell within the size range used in developing the Bunce allometric model.

In addition, changes in forest management have increased the abundance of larger trees compared to the 1960s when Bunce carried out his study. Indeed, many of the trees in Wytham Woods are nearly twice as large as the trees used in the original calculation of biomass. The median dbh in Bunce (1968) is 8.4 cm; the mean dbh for the TLS dataset (based on a 2015 inventory) is 15.9 cm. The large trees represent a high proportion of the above-ground biomass: 50% of AGB in Wytham Woods was associated with fewer than 7% of the trees (those with dbh greater than 53.1 cm). All these trees were larger than the trees used to calibrate the widely used allometric model.

Calders et al. say that the distribution of tree size (trunk diameter) in Wytham Woods is representative of broadleaved species throughout Great Britain. Basal area had doubled in 40 years from 1974. Thus, the growth trajectory reflected at Wytham Woods – and presumably across Britain – resulted in a net carbon sink of ~1.77tha-1year-1ha in Calder et al’s 3D analysis. This is almost double the ~1tha-1year-1ha derived using the traditional allometric models. .

Methodology

graphic from Calders et al. large maple (green) and oak (blue) trees illustrated by LiDAR images – profiles and location in the forest (indicated by arrows); copyright Ecological Solutions and Evidence

Calder et al. used terrestrial laser scanning (TLS; terrestrial LiDAR) methods & 3-dimensional analysis to derive tree volume and convert this to above-ground biomass (AGB) and carbon sequestration. They scanned 815 live standing trees in Wytham Woods during winter so leaves did not complicate computations. They found:

  •  total volume of these 815 trees was 742.6±3.9m3ha-1.
  • TLS-derived AGB =  409.9tha-1. This is significantly greater than the 231.9tha-1 resulting from applying the Bunce allometric models.
  • In sum, 1.77 times more carbon is stored per ha according to this model than carbon values derived through the allometric AGB models developed by Bunce. 

A Fly in the Ointment

ash dieback in Great Britain; cc-by-sa/2.0 – © Adrian Diack – geograph.org.uk/p/6497286

Calder et al. describe the threat to European carbon sequestration projections caused by ash dieback. Ash dieback has been spreading across Europe since the 1990s – although the causal agent was not determined until 2006 (Paap et al.).  It is killing European ash across the continent. Some of these trees are large – that is, store impressive amounts of carbon. In Wytham Woods specifically, ash dieback threatens some of the largest trees.

Ash dieback disease was first observed in the United Kingdom in 2012; it reached Wytham Woods in 2017. Ash contributed ~13.2% of the biomass carbon sequestration in the study area. However, the species’ presence in all of Wytham Woods might approach ~34%. Ash comprised 75% of seedlings in 2012. Ash is one of three species that contribute >26% of broadleaved tree AGB & carbon for Great Britain as a whole. The British Woodland Trust expects the UK to lose 80% of its ash trees.  As a result, Wytham Woods, Britain, and, by extension, a significant amount of European temperate deciduous forests, are likely to become a substantial carbon source in the next decades.

A dead elm tree on Skelston Moor; photo by Walter Baxter; CC BY-SA 2.0

I note that Europe has already lost any sequestration benefits it would have enjoyed from large elm trees due to “Dutch” elm disease. Various Phytophtoras are killing trees in Britain and Ireland.

CC BY-SA 2.0

I recently described threats to plane trees, pines, and other trees across Europe.

I interpret these findings as demonstrating that protecting large trees growing in natural ecosystems is highly important as we try to cope with climate change. This will require determined, sustained, and strategic actions in the face of disturbances predicted to increase as result of changes in climate and the human activities that contribute to climate change – e.g., overexploitation of natural resources, conversion of natural systems to human use, shipping goods around the globe, …

Calders and colleagues say we cannot afford to lose substantial reservoirs of carbon currently sequestered in temperate forests. Such forests currently account for ~14% of global forest carbon stocks in their biomass and soil. Their importance is growing because of widespread deforestation in the tropics.

What is To Be Done? (to cite Lenin)

Calders and colleagues call for several actions to address potential biases in biomass carbon estimates and drastically improve estimates of forest biomass:

(i) Research to improve knowledge about carbon sequestration levels in trees. This will require

a) greater sampling using such nondestructive methods as TLS to estimate AGB of a wider variety of forest types,

b) improved understanding of wood density, and

c) properly testing the fundamental assumption of size dependency in allometric models.

(ii) Develop empirical models of AGB that do not assume size invariance. This might require. This implies more destructive harvesting to obtain data from a variety of forest compositions, locations, etc,

(iii) Establish a biomass reference network of permanent sample plots specifically designed for estimating AGB. The improved data can then be fed into satellite-derived biomass estimates, which are likely to become the de facto standard for assessing the state and change of forest AGB at large scales. The GEO-TREES database can help. It aims to build on existing long-term ecological plot networks, by including TLS, airborne laser scanning & other ancillary data (including harvest measurements) to specifically allow for upscaling of AGB & development of new empirical models.

(iv) Ensure much better traceability in the use of allometric models. If applying a model to a site at several removes from the original data, e.g., published allometric models, clearly identify where and when the underpinning data were collected, the number and size range of trees from which models were derived, and clarify any assumptions regarding environmental conditions, wood density etc. Database initiatives such as GlobAllomeTree can help.

North American Situation

remains of Michigan’s champion green ash

A study in 2019 (Fei et al. 2019; full citation at end of the blog) has already estimated that 41% of total live (woody) biomass in forests of the “lower 48” states is at risk from the most damaging of introduced pests. The greatest biomass loss was caused by emerald ash borer, Dutch elm disease, beech bark disease, and hemlock woolly adelgid. Before arrival of these non-native pests, mature ash, elms, beech and hemlock were  large – providing significant storage of carbon (and other ecosystem services). A complication is that elms and beech, at least, began dying decades before the underlying (Forest Inventory and Analysis; FIA) data began to be collected. Consequently, the reported mortality rates underestimate the actual loss in biomass associated with these pests.

Did Fei et al. rely on biomass estimates based on measurements and algorithms now questioned by Calders et al.? One of the co-authors, Dr. Randall Morin, has told me that USFS scientists are shifting to new models that will result in a slight bump in overall biomass for the U.S. largely because of increased recognition of the biomass in crowns and limbs.  However, the new models are based partly on a felled-tree study, so I wonder if they will have similar issues.

Certainly in some situations that threat posed by non-native pests is not yet being adequately incorporated. Badgley et al. (2022) analyzed the California cap-and-trade program to determine whether forest projects enrolled under its provisions can provide sufficiently permanent carbon sequestration. They determined that sequestration losses tied to mortality of one tree species (tanoak; Notholithocarpus densiflorus) due to one disease – sudden oak death – would fully deplete the “buffer pool” set aside to compensate for losses due to disease and insect infestations. This leaves the program unable to provide the promised benefits in carbon sequestration. SOD continues to spread and tanoaks (and other tree species) to die. California along is home to other tree-killing pathogens and insects, e.g., white pine blister rust, Port-Orford cedar root disease,  Fusarium dieback, goldspotted oak borer … 

California live oak killed by GSOB; photo by F.T. Campbell

Furthermore, the program allows enrollment of forests across the United States, so the multiple pests threatening ash, hemlocks, oaks, and other tree taxa across North America must also be accommodated. I have not even mentioned the likelihood that additional tree-killing pests will be introduced in the future.

How can scientists enhance the credibility of well-intentioned efforts to incorporate forest conservation into strategies aimed at mitigating climate change?

[A separate study by Oxford University has estimated that 2 billion tonnes of CO2 are removed from the atmosphere every year – 99% of it by trees. They point out that this is not sufficient to help Earth avoid temperatures rising above Paris-set levels. See an article by Lottie Limb, Reuters, published 19 January 2023 (sorry – I don’t have a direct link).]

SOURCES

Badgley, G., Chay, F., Chegwidden, O.S., Hamman, J.J., Freeman J. and Cullenward, D. 2022. Calif’s forest carbon offsets buffer pool is severely undercapitalized. Front. For. Glob. Change 5:930426. doi: 10.3389/ffgc.2022.930426

Bunce, R. G. H. (1968). Biomass and production of trees in a mixed deciduous woodland: I. Girth and height as parameters for the estimation of tree dry weight. Journal of Ecology, 56, 759–775.

Calders, K., H. Verbeeck, A. Burt, N. Origo, J. Nightingale, Y. Malhi, P. Wilkes, P. Raumonen, R.G.H. Bunce, M. Disney.  Laser scanning reveals potential underestimation of biomass carbon in temperate forest. Ecol Solut Evid. 2022;3:e12197. wileyonlinelibrary.com/journal/eso3  open access!

Paap, T., M.J. Wingfield, T.I. Burgess, J.R.U. Wilson, D.M. Richardson, A. Santini.  2022. Invasion Frameworks: a Forest Pathogen Perspective. FOREST PATHOLOGY Current Forestry Reports https://doi.org/10.1007/s40725-021-00157-4

(UK) Woodland Trust https://www.woodlandtrust.org.uk/trees-woods-and-wildlife/tree-pests-and-diseases/key-tree-pests-and-diseases/ash-dieback/

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

FY 23 Funding of Tree Pest Projects

Phytophthora ramorum-infected rhododendron plant; photo by Jennifer Parke, Oregon State University

APHIS has released the list of projects funded under §7721 of the Plant Protection Act in Fiscal Year 2023.  Projects funded under the Plant Pest and Disease Management and Disaster Prevention Program (PPDMDPP) are intend to strengthen the nation’s infrastructure for pest detection and surveillance, identification, threat mitigation, and safeguard the nursery production system.

APHIS has allocated $62.975 M to fund 322 projects in 48 states, Guam, & Puerto Rico. ~ $13.5 M has been reserved for responding to pest and plant health emergencies throughout the year. USDA is funding ~70% of the more than 460 PPDMDPP proposals submitted.

Funding by Goal Area

  • 1A – Enhance Plant Pest/Disease Analysis                               $2,057,174
  • 1S – Enhance Plant Pest/Disease Survey                                 $14,375,000
  • 2 – Target Domestic Inspection Activities at Vulnerable Points              $6,356,964
  • 3 – Pest Identification and Detection Technology Enhancement            $5,295,125
  • 4 – Safeguard Nursery Production                                                                 $2,079,119
  • 5 – Outreach and Education                                                                            $4,131,333
  • 6 – Enhance Mitigation Capabilities                                                             $13,875,775

By my calculation (subject to error!), the total for projects on forest pests is ~$6.5 M – or a little over 10% of the total. The top recipient was survey and management of sudden oak death: ~$700,000 for research at NORS-DUC and NCSU plus detection efforts in nurseries of 14 states. Other well-funded efforts were surveys for bark beetles and forest pests (projects in 14 states); surveys for Asian defoliators (projects in 14 states); and outreach programs targetting the spotted lanternfly (10 states, plus surveys in California).

Three states (Iowa, Kentucky and Maryland) received funding for surveys targetting thousand cankers disease of walnut; two states (Kentucky and Maine) obtained funding for outreach about the risk associated with firewood. Funding for the Nature Conservancy’s “Don’t Move Firewood” campaign appears under the home state of its leader, Montana.

Massachusetts obtained funding for outreach re: Asian longhorned beetle. Ohio State received funding for developing a risk map for beech leaf disease.

Ten states received funding for no forest pest projects; I don’t know whether they sought funding for this purpose. These states are Arizona, Colorado, Florida, Hawai`i, Idaho, Minnesota, Nebraska, New Mexico, North Dakota, and Puerto Rico. The “National” funding category also contained no forest pest projects.

Looking at the overall funding level might give a somewhat skewed impression because several of the projects with total funding of ~ $500,000 are actually carried out by USDA agencies. These awards are listed under the state in which the USDA facility happens to be located. Nearly half this money ($213,000) goes to a project by an Agriculture Research Service unit in Delaware to study the efficacy of the biocontrol targetting emerald ash borer.  Another $105,588 is allocated to detection of the SOD pathogen (Phytophthora ramorum) in irrigation water, undertaken – I think – at the ARS quarantine facility in Frederick, Maryland. A smaller project at a USFS research facility in Connecticut is studying egg diapause in the spotted lanternfly. The Delaware ARS unit is also pursuing biological control of the red-necked longhorn beetle (RNB) Aromia bungi, which attacks primarily stone fruits. Native to China and other countries in Asia, RNB has been intercepted in wood packaging by the U.S. and Europe; it has become established in Italy and Japan [Kim Alan Hoelmer, ARS, pers. comm.] The APHIS lab in Massachusetts is developing a light trap for detection of the Asian spongy moths Lymantria dispar.

I am intrigued that two states (Mississippi and Nevada) are conducting “palm commodity” surveys. Palms are important components of the environment in some states – although I am not certain these are the two most important!

As you might remember, I am also interested in some invaders other than forest pests. Washington has obtained $998,000 to support two projects integral to its efforts to find and eradicate the Asian (or Northern) Giant hornet. Oregon has obtained funding to carry out a survey for these hornets.  

Cactus moth larvae feeding on prickly pear cactus; photo by Doug Beckers, via Flickr

I rejoice to see that the Florida Department of Agriculture continues efforts to deploy biocontrol agents targetting the cactus moth. The Agriculture Research Service is evaluating the establishment of biocontrol agents released to counter two highly invasive plants. Re: Brazilian peppertree, I don’t question the damage it has caused in southern Florida but I have grave concerns should the psyllid and thrips reach Hawai`i. I am most distressed to see that Hawaiian Division of Forestry and Wildlife and Department of Agriculture are actively pursuing deliberate introduction of the thrips. ARS is also searching for potential biocontrol agents targetting the invasive cogongrass (Imperata cylindrica). Penn State is working on registering a soil fungus native to North America, Verticillium nonalfalfae, as a biocontrol targetting the highly invasive tree of heaven (Ailanthus).  

Phragmites invading Merkle Wildlife Sanctuary, Upper Marlboro, Maryland; photo by Alicia Pimental, (c) Chesapeake Bay Foundation

APHIS is pursuing biocontrol for “Roseau” cane scale. This situation presents a conflict of geographic regions because the plant to be controlled is Phragmites australis. Phragmites is highly invasive in the Mid-Atlantic, Northeast, and Great Lakes states . On the Mississippi delta it is considered important in maintaining wetlands crucial to protecting the Louisiana coast from rising seas.

Finally, USDA is pursuing management tools to contain the Box Tree Moth – a threat to the most widely planted ornamental shrub.  

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org