Invasive Earthworms Need Action!

 worm_medAmynthes agrestis; National Park Service photo

 

Earthworms have been largely ignored as a class of invaders. But evidence is accumulating that their numbers and impacts are too significant to ignore.

 

Non-indigenous earthworms began arriving in the Americas with the first European colonists and they are now widespread. One study (see summary of Reynolds and Wetzel 2008 here) found 67 introduced species among the 253 earthworm species in North America (including Mexico, Puerto Rico, Hawaii, and Bermuda).  In Illinois, 20 of the 38 species are introduced. Nuzzo et al. 2009 recorded a total of 11 earthworm species – all nonnative – at 15 forest sites in central New York and northeastern Pennsylvania.

 

Earthworms are good invaders – they reproduce quickly and are easily transported to new places – both carelessly and deliberately for bait, composting, or other uses.

 

As ecosystem engineers, invasive earthworms cause significant impacts to the soil and leaf litter, as well as to plants and animals dependent on those strata.  However, they are little studied and few efforts been made to address their threat.  Wisconsin is the pioneer (see below).

 

Ecosystem Engineers: Impacts on Soil, Plants, and Animals

 

Invasive alien earthworms cause enormous damage in forest environments. (I have seen no information about the damage they might cause in other natural systems.)  Earthworms can change soil chemistry, soil structure, and the quantity and quality of the litter layer on the soil surface. Changes include rapid incorporation of leaf litter into the soil, alteration of soil chemistry, changes in soil pH, mixing among soil layers, and increased soil disturbance. Such changes have been shown to harm native plant species – both herbaceous ones on the forest floor as well as the regeneration of woody vegetation, including trees.  See the review just published by Craven et al. 2016 and Hale and Nuzzo references below).

 

Craven et al. (2016) conducted a meta-analysis of 645 observations in earlier publications. They sought to measure the effects of introduced earthworms on plant diversity, cover of plant functional groups, and cover of native and non-native plants. Sites with a higher the diversity of invading earthworms – with associated variety in behaviors (see below) – had greater declines in plant diversity.  Higher earthworm biomass or density did not reduce plant diversity but did change plant community composition:  cover of sedges and grasses and non-native plant species significantly increased, and cover of native plant species (of all functional groups) tended to decrease. The increase in non-native plant cover in areas with higher earthworm biomass is thus an example of ‘invasional meltdown’ as propounded by Simberloff and Von Holle in 1999.

 

Craven et al. 2016 propose several direct and indirect mechanisms by which introduced worms might affect plant species. These include ingestion of seeds or seedlings, burying seeds, and alteration of water or nutrient availability, mycorrhizal associations, and soil structure. European and Asian plant species that co-evolved in the presence of earthworms could better tolerate earthworms’ presence.

 

Important Questions

 

Craven et al. 2016 note that the interaction of the invader-related factors with other site-related conditions such as deer browsing, fire history, forest management, and land-use history require further study to disentangle. Many other questions need to be answered, too.


Although Craven et al. (2016) do not specify the geographic range of the studies analyzed, I believe most were conducted in the northern and northeastern regions of the United States and some parts of Canada. It would be interesting to see if these studies’ findings differed from those carried out in Great Smoky Mountains National Park on the Tennessee-North Carolina border. The latter is an area where – unlike the northern states – earthworms were not wiped out by the most recent glaciation.  (See references by Bruce Snyder and Jeremy Craft, below.)

 

The finding that worm species diversity is associated with decreased plant species diversity seems to indicate that worms’ impacts might vary depending on the behavior of the worm in question – especially whether the worms remain on or near the soil surface and — if not — how deeply they burrow.  Are studies under way to clarify these differences?

 

Furthermore, do the impacts of European worms – the subjects of most of the studies carried out in Minnesota, New York, and Pennsylvania – differ substantially from the impacts of Asian earthworms? Or are any differences explained better by the species’ activity in the soil (e.g., depth of burrows) than their origins?

 

Impacts of earthworms on wildlife are less studied and perhaps less clear.  Several studies have focused on salamanders because of their known dependence on leaf litter. In a study of 10 sites in central New York and northeastern Pennsylvania, Maertz et al. 2009 found that salamander abundance declined exponentially with decreasing volume of leaf litter. They suggested that the salamander declines were a response to declines in the abundance of small arthropods, a stable resource.

A study by Ziemba et al. (2016) in Ohio involved Asian worms (genera Amynthas and Metaphire) rather than the European worms most often included in studies carried out in Minnesota, New York, and Pennsylvania.  These authors found a complex picture: earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female abundance.

Craft (2009) found that reduced leaf litter mass in invaded areas of Great Smoky Mountains National Park diminished habitat for both salamanders and salamander prey.

Others have studied millipedes – a largely unappreciated example of biological diversity in the Southern Appalachian Mountains – in Great Smoky Mountains National Park. Snyder and colleagues (2013) found that earthworms in the genus Amynthas altered soils by decreasing the depth of partially decomposed organic horizons and increasing soil aggregation. The result was a significant decrease in millipede abundance and species richness – probably as a result of competition for food.

Results from a study of earthworms’ effects on the Park’s food web by Anita Juen and Daniela Straube, begun in 2010, have not yet been published (pers. comm. from GRSM staff).

Even birds might be affected by worm invasions. One study in Wisconsin found that hermit thrush and ovenbird populations are lower in areas infested by worms. Possible reasons for the decline are that nests (on the ground) are more vulnerable to predation when located in the grasses promoted by worms, and a reduction in invertebrates fed to nestlings.

 

Expanding Risks

Several non-native earthworm species have been collected (so far) only from greenhouses or other places of indoor cultivation.  But can we be sure that they are not being spread to yards, parks, and other places halfway to natural systems through movement of plants and mulch?

 

Earthworms are extremely difficult to manage once established.

Are these challenges the reasons why few official efforts to control earthworm spread have been adopted? Or is it the animals’ public image – they are widely regarded as “good” critters that enrich the soil and facilitate composting. Or is it that trying to control worms will require enhanced regulation of the nursery and green waste industries?

worms1Amynthes photo; from Wisconsin DNR website

Wisconsin Is the Policy Pioneer

Wisconsin stands out for trying to address the issue! The state’s conservation and phytosanitary officials became alarmed when they detected Amynthas species in the University of Wisconsin Arboretum in 2013.  This is the site of regular plant sales,a likely pathway for spread.  Wisconsin now knows this genus of worms to be present in 21 counties, mainly along urban corridors.  They have not yet been found in the state’s forests.

Wisconsin is acting to protect its forests despite Amynthas worms having been present in the United States for over a century: Snyder, Callaham and Hendrix 2010 say several species of Amynthas were documented in Illinois and Mississippi by the 1890’s.  Some 15 species are recorded as established and widespread across the eastern United States (Reynolds and Wetzel 2004).

 

Wisconsin has classified the Amynthas genus as “restricted” – so their movement is now regulated. The risk of spread appears to be greatest through mulch produced from leaves collected in residential communities. The state held a workshop during which the regulated industry developed best management practices to address that risk. The Wisconsin Department of Natural Resources has posted a web page with information about identifying the worms and the BMPs. (Wisconsin DNR has also been a leader in tackling the firewood pathway.) The Wisconsin Department of Agriculture put the worm issue on the agenda of the National Plant Board in August 2016 and urged other states to take action.

The Wisconsin DNR webpage has

  • ID cards and other information to aid identification, g., photos of worms and the “coffee ground” soil they create;
  • a brochure with the state’s new “best management practices”
  • educate yourself and others to recognize jumping worms;
  • watch for jumping worms and signs of their presence;
  • ARRIVE CLEAN, LEAVE CLEAN – Clean soil and debris from vehicles, equipment and personal gear before moving to and from a work or recreational area;
  • only use, sell, plant, purchase or trade landscape and gardening materials and plants that appear to be free of jumping worms; and
  • only sell, purchase or trade compost that was heated to appropriate temperatures and duration following protocols that reduce pathogens.

What’s Up Where You Are?

What is your state doing to slow the spread of invasive earthworms?

  • Do nursery inspectors look for earthworms when approving plant shipments? Craven et al. 2016 findings re: higher impacts on plants as number of worm species rises demonstrate the importance of slowing spread of new species even into areas that already have some non-native earthworms.
  • Are professional associations of nurserymen and green waste recyclers educating their members about the damage caused by invasive earthworms and steps they can take to minimize worms’ spread to new areas?
  • Are organizations of anglers and gardeners in your state educating their members about the damage caused by invasive earthworms and steps they can take to minimize worms’ spread to new areas?
  • Are ecologists studying earthworm invasion impacts in other parts of the country? In non-forested ecosystems?
  • Are conservation organizations initiating or joining outreach efforts?
  • Can worm-education efforts be joined with h more robust public and private outreach focused on aquatic invaders, invasive plants, or firewood?

 

SOURCES

Bohlen, P.J., S. Scheu, C.M. Hale, M.A. McLean, S. Migge, P.M. Groffman, and D. Parkinson. 2004.  Non-native invasive earthworms as agents of change in northern temperate forests. Front Ecol Environ 2004; 2(8): 427–435

Craft, J.J. 2009. Effects of an invasive earthworm on plethodontid salamanders in Great Smoky Mountans National Park. Thesis prepared at Western Carolina University.

Craven, D., M.P. Thakur, E.K. Cameron, L.E. Frelich, R.B. Ejour, R.B. Blair, B. Blossey, J. Burtis, A. Choi, A. Davalos, T.J. Fahey, N.A. Fisichelli, K. Gibson, I.T. Handa, K. Hopfensperger, S.R. Loss, V. Nuzzo, J.C. Maerz, T. Sackett, B.C. Scharenbroch, S.M. Smith, M. Vellend, L.G. Umek, and N. Eisenhauer. 2016.The unseen invaders: intro earthworms as drivers of change in plant communities in No Am forests (a meta-analysis). Global Change Biology (2016), doi: 10.1111/gcb.13446 available here.

Hendrix, P.F. 2010. Spatial variability of an invasive earthworm (Amynthas agrestis) population and potential impacts on soil characteristics and millipedes in the Great Smoky Mountains National Park, USA. Biological Invasions DOI 10.1007/s10530-010-9826-4

Maertz, J.C., V. Nuzzo, B. Blossey.  2009. Declines in Woodland Salamander Abundance Associated with Non-Native Earthworm and Plant Invasions. Conservation Biology Volume 23, Issue 4 August 2009  Pages 975–981

Nuzzo, V.A., J.C. Maerz, B. Blossey. 2009. Earthworm Invasion as the Driving Force Behind Plant Invasion and Community Change in Northeastern North American Forests. Conservation Biology Volume 23, Number 4, 966-974.

Simberloff, D.  and Von Holle, B. 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological invasions 1, 21-32

Snyder, B.A., M.A. Callaham, C.N. Lowe, P.F. Hendrix. 2013. Earthworm invasion in North America: food resource competition affects native millipede survival and invasive earthworm reproduction. Soil Biology and Biochemistry 57, 212-216

Ziemba JL, Hickerson C-AM, Anthony CD. 2016. Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders. PLoS ONE 11(5): e0151591. doi:10.1371/journal.pone.0151591

 

See also:

Global picture: https://www.newscientist.com/article/mg19325931-600-war-of-the-worms/

Great Lakes Wormwatch website: http://www.nrri.umn.edu/worms/research/publications.html  

Illinois Natural History Survey webpage: http://wwn.inhs.illinois.edu/~mjwetzel/IllinoisEarthworms.html

Wisconsin  DNR http://dnr.wi.gov/topic/invasives/fact/jumpingWorm/index.html

Information on western Canada:

http://bcinvasives.ca/news-events/recent-highlights/earthworm-invasion-calling-all-citizen-scientists/

http://ibis.geog.ubc.ca/biodiversity/efauna/EarthwormsofBritishColumbia.html

Native Earthworms of British Columbia Forests: http://www.cfs.nrcan.gc.ca/pubwarehouse/pdfs/5102.pdf

 

Posted by Faith Campbell

A Red List for Trees!

16 dead sweet bay + grpF.T. Campbell  dead sweetbay, Florida Everglades

At the global level, the World Conservation Union (IUCN) is the recognized leader in conservation.  Information from the IUCN’s Red List has been widely used to inform conservation policies and legislation, as a tool for environmental monitoring and reporting, and to prioritize areas for conservation action.

 

The IUCN is holding its World Conservation Congress in Honolulu during the first half of September.  The several sessions focused on both invasive species and forests have been grouped into “Journeys”.  The invasive species Journey schedule is available here.  The schedule for the forest Journey is available here   I don’t think either puts much emphasis on the year-old Tree Specialist Group.

 

Over the decades, the Union has increasingly engaged on plant conservation issues. The plants under consideration now include trees! There are multiple ways that you can be part of this important effort. Details are below. One of the efforts’ leaders assures me that the IUCN process will address tree species not yet “endangered” but under severe pressure – currently or virtually certainly in the near future – from established non-native insects and pathogens.

 

The IUCN has noted that trees have high ecological, economic, and cultural value. Forests are being converted or degraded by many human-related activities, including overharvesting, fire and grazing – to say nothing of climate change and non-native pests. Yet – the impacts of forest conversion and degradation on tree species per se are largely unknown. How many tree species qualify for a “Red List” category: extinct, critically endangered, endangered, or vulnerable? (For a discussion of the criteria applied in assigning categories, go here.

(Of course, full-scale extinction or endangerment of a species is the extreme; ecological damage begins earlier and more locally, as the species declines as the result of a suite of pressures …)

 

The IUCN has formed a Global Tree Specialist Group to conduct a comprehensive conservation assessment of the world’s tree species, linked to IUCN’s Red List. The effort is being led by the Tree Specialist Group  and the Botanic Gardens Conservation International (BGCI). The group’s mission, underlying considerations and process are described in an article published in the Oryx article cited below.

 

IUCN has recently completed analyses of extinction risk in selected animal groups. They concluded that 14% of bird, 33% of amphibian, and 22% of mammal species are either threatened or extinct.

 

Preparing the same type of analysis for tree species will be more complicated. First there are many more plant species than ones in the selected groups of animals. Scientists don’t know the total number of extant tree species. One estimate is 60,000.  If that estimate is in the ballpark, the status of approximately 84% of tree species has not yet been assessed. Assessments of tree species begun in the 1990s have resulted in approximately 9,500 species being included in one of the Red List categories.  They represent slightly less than half of all plant species listed.

 

To achieve the goal of assessing the status of all tree species by 2020, organizers plan to adopt the approach used successfully in the recent assessments of vertebrate groups – mobilizing global data sets (which have become more numerous and easier to use) and hundreds of volunteer experts.

 

To start, the Group is focused on specific plant families with high numbers of trees, e.g., Aquifoliaceae, Fabaceae, Fagaceae, Lauraceae, Meliaceae and Myrtaceae. Combined, these families include more than 20,000 species. Assessments of Betulaceae and Ebenaceae have already started, led by BGCI and the Missouri Botanical Garden, respectively.

 

Project leaders hope to complete 5,000 more tree assessments – new or updates – during 2016.

 

What is Under Way

 

Other IUCN specialist groups are assisting in assessing the status of trees in various geographic regions or with particular human uses. The IUCN Plants for People initiative is already assessing timber, medicinal and crop wild relatives. The Crop Wild Relative Specialist Group has prepared draft assessments for over 90 woody species of Malus, Prunus, Pistacia and Mangifera. Specialist Groups and Red List authorities in South Africa, Brazil, and East Africa and several island groups are contributing.

 

A third focus will be tree species presumed to be most at risk from climate change, e.g., montane and island trees. IUCN Specialist Groups in Hawai`i, New Caledonia, Galapagos, Mascarene Islands, Fiji, and Madagascar are working.

 

The BGCI is making progress on assessing Europe’s non-coniferous trees. If you wish to help, contact Malin Rivers at malin.rivers@bgci.org.

 

In North America, the U.S. Forest Service hosted a meeting on “Gene Conservation of Tree Species” at the Morton Arboretum in Chicago in May 2016. Murphy Westwood facilitated a special session during which “listing” experts from IUCN, NatureServe, USFS CAPTURE Program, and the U.S. Fish and Wildlife Service compared their assessment processes and discussed how data might be shared more efficiently. A goal of completing the IUCN Red List of North American Trees was agreed on. The Morton Arboretum will help coordinate the effort. To contribute please contact Murphy Westwood at mwestwood@morton.org.  

 

One suggestion was to conduct an IUCN Red List assessment for the genus Fraxinus. Two ash species – one Asian, one Central American – are included in the IUCN Red List (although one needs to be updated). Jeanne Romero-Severson of Notre Dame University has offered to undertake assessments for green ash, Fraxinus pennsylvanica, and black ash, Fraxinus nigra. If you wish to help, contact Sara Oldfield at sara@saraoldfield.net.

 

(I think several other species also warrant IUCN assessment, including redbay Persea borbonia, tanoak Notholithocarpus densiflorus, and whitebark pine Pinus albicaulis)

 

This IUCN effort represents yet a fourth set of people examining tree-pest interactions – people integrated into traditional, internationally-focused conservation organizations. There are at least three other groups already involved: (1) forest pest experts in academia and government agencies, (2) people who focus on invasive species, and (3) phytosanitary officials. I think that these latter three groups already interact less smoothly than would be ideal. How can we all combine our efforts to enhance protection programs?

 

Might more of the scientists who work on insects and pathogens attacking tree species join the IUCN Tree Specialist group? Might organizers of meetings make a greater effort to engage people from all four silos in discussions of strategies? Might some virtual for a be established that could facilitate communication across the gaps – perhaps emphasizing the gap between invasive species experts and phytosanitary officials?

 

Finally, how can we use the new focus on tree species’ degree of endangerment to enhance efforts to prevent and respond to invasions by non-native insects and pathogens? How do we link these concerns to existing attention to the ecological and economic impacts – which begin to manifest long before a species qualifies as “endangered”.  How can the various approaches reinforce each other?

 

SOURCES

 

 

Newton, A., S. Oldfield, M. Rivers, J. Mark, G. Schatz, N. Tejedor Garavito, E. Cantarello, D. Golicher, L. Cayuela, and L. Miles. 2015. Towards a Global Tree Assessment. Oryx, Volume 49, Issue 3, July 2015, pp. 410-415.

 

Explanatory information available at

https://www.bgci.org/plant-conservation/globaltreeassessment/

Click to access GTALeaflet%20FINAL.pdf

 

The GTSG Newsletter is apparently available only to those who are part of the IUCN network.

 

For more information, contact Sara Oldfield, Co-Chair GTSG, at sara@saraoldfield.net

 

 

 

Posted by Faith Campbell

New Alarms About Phytophthora species in U.S. Nurseries

 

CDFA photo monkeyflower

sticky monkey flower – plant on right is infested by P. tentaculata; photo by Suzanne Rooney-Latham, California Department of Food & Agriculture

 

In April, I posted a blog reporting on a study in Europe that documented 64 Phytophthora taxa detected in woody plant nurseries or forest restoration plantings. The presence of Phytophthora was widespread,  if not universal:  91% of the 732 nurseries analyzed and 66% of forest and landscape plantings had at least one Phytophthora taxon present.

The risk of serious disease in native European plants appears to be substantial:  one or more of 19 Phytophthora species which can attack native European or widely-planted trees and shubs were isolated from 84% of ornamental planted stands. Hundreds of previously unknown Phytophthora–host associations were observed.

These percentages could be underestimates, because detection of Phytophthora infestation is difficult. One of the principal difficiulties is that the majority of infested plants in nurseries did not display symptoms.

How does the situation in Europe compare to that that in the United States? We don’t know, because no-one has carried out a similarly wide-ranging, nation-wide study. However, some partial studies indicate reason for concern.

 

Knaus et al. 2015 summarized their own findings from Oregon and those of earlier state-by-state studies:

  • Knaus and colleagues surveyed symptomatic Rhododendron in seven nurseries in Oregon and found evidence of widespread infestation. P. syringae was found in all seven nurseries; P. plurivora in six. Nine other taxa were found in one or a few nurseries. Which Phytophthora species were present varied greatly across nurseries and – within individual nurseries – by season (spring or fall).
  • Surveys by Schwingle and colleagues of 45 nurseries in Minnesota in 2002-2003 and fewer nurseries in 2004 and 2005 found five Phytophthora species.
  • A survey by Warfield and colleagues of 14 North Carolina nurseries in 2003 found three Phytophthora species.
  • Donohue and Lamour surveyed 29 Tennessee nurseries in 2004-2005; they found seven Phytophthora species.
  • A survey of 1,619 California nurseries in 2005 and 2006 carried out by Yakabe and colleagues found eight Phytophthora species (but see below).
  • A survey of 10 Maryland nurseries by Bienapfl and Balci in 2010-2012 found 10 Phytophthora species; six of these were on plants that had arrived recently from West Coast suppliers.
  • A set of repeated surveys of four Oregon nurseries in 2006 – 2009 by Parke and colleagues found 16 Phytophthora species on rhododendron tissues (most of studies looked only at lesions on leaves)

All these studies found the P. citricola complex to be the most widespread. In West Coast nurseries, P. syringae was common.

Knaus et al. conclude that since there is a great amount of heterogeneity among Oregon nurseries, it is likely that, as more nurseries are surveyed, a greater amount of Phytophthora diversity may be discovered within nurseries.

Most of the surveys reported by Knaus and colleagues were done in response to detection of the sudden oak death pathogen (SOD), P. ramorum, on plants shipped from California and Oregon in the interstate plant trade. Since funding for tracking P. ramorum and other Phytophthora species in nursery stock has fallen considerably (see below), it is unlikely that such surveys will be repeated or expanded to other states – despite the apparent widespread presence of these actual or potential pathogens.

Crisis in Native Plant Nurseries in California – What Does it Mean for Other States?

California has discovered the widespread presence of Phytophthora in native plants used to restore native habitats after disturbance, e.g., construction of water or other projects. These pathogens were traced to native plant nurseries. Nursery stock had been planted before the infestation problem was realized – so restoration managers are now trying to clean up both the nurseries and the restoration sites. This situation was discussed during a special session of the 6th SOD Science Symposium in San Francisco in June 2016. More than 170 people attended the session – demonstrating a high level of concern in the native plant community. Abstracts and presentations will be available at http://ucanr.edu/sites/sod6/.

The problem was first discovered in 2012 when a nursery noted severe dieback of sticky monkey flower (Diplacus (Mimulus) aurantiacus). The California Department of Food and Agriculture (CDFA) identified the cause as P. tentaculata – which is a federally-designated “quarantine pest”. It had never before been detected in the United States.

Native plant nursery owners and restoration ecologists responded quickly by sending many samples for identification. Between January 2014 and June 2016, CDFA evaluated 1,500 samples from nurseries and field sites. One quarter of the samples were positive for at least one Phytophthora species. In total, 25 species were detected, although 70% of the samples belonged to one of six taxa.

Little is known about root pathogens of California’s native plants. The sample results revealed a long list of newly detected associations.  However, it has also proved especially difficult to detect symptoms on some plants. Finally, since only symptomatic plants were sampled, it is likely that additional plant-Phytophthora associations remain to be detected.

No one knows which plant-Phytophthora associations are capable of creating epidemics of plant disease. At least two species have raised particular concern:

Among the “lessons learned” are two previously identified following the detection of P. ramorum in horticultural nurseries a decade earlier and reinforced now:

  • artificial irrigation of plants in nurseries facilitates infestations and movement of infested plant material; and
  • re-use of infested pots facilitates spread of these infestations.

 

Therefore, both nursery managers and regulators need to be alert to this risk in all types of nurseries. The necessary changes in nursery practices will take time. See the talk by Alisa Shor from the Parks Conservancy, which operates the nursery for the Golden Gate National Recreation Area when the meeting presentations are posted at http://ucanr.edu/sites/sod6/. Shor described the extensive efforts made by Parks Conservancy nurseries to clean up and adopt new procedures.

 

Agencies responsible for restoration projects face a daunting task. They have found dozens of Phytophthora taxa at already-planted sites, including the two identified above as federal quarantine species. Managers must develop best management practices that apply to contract specifications for equipment and workers operating on those sites; for nurseries wishing to bid to supply plants; and for planting protocols. Meanwhile, existing restoration regulations require them to restore plant cover quickly – which cannot be done by relying on seed – which is less likely to harbor a pathogen than the containerized plants now used.

As noted above, the high-risk nursery practices identified in this case match those identified over the past decade in response to the spread of sudden oak death (SOD) through nursery stock. Ted Sweicki, an ecologist long engaged on SOD and related issues and now advising the restoration agencies, noted that it is easier to prevent introduction of a Phytophthora to a site then to clean up the site afterwards. He advocated adoption of systems approach to mitigate Phytophthora presence in nurseries. Ted said this is not a new idea! However, adoption of such practices has been far too slow in the horticultural trade. Ted was hopeful that this new crisis in California would have a different result because:

  • Owners of native plant nurseries are strongly concerned about the environment;
  • Restoration agencies are averse to being responsible for introduction of Phytophthora species to their lands; and
  • These agencies make purchases that are sufficiently large to empower the agencies to compel nurseries to comply with strict protocols.

People in other states should not rest easy. There is no reason to think this problem is limited to California. Other states need to be looking at the diversity of Phytophthora species in their nurseries and plantings. But are they doing so?

Meanwhile, federal funds that have supported studies of the genetics of P. ramorum in both West Coast forests and in nurseries are rapidly disappearing. The information provided by these studies has been crucial to tracing movement of various strains of the pathogen.

As noted in my earlier blog, none of the 59 Phytophthora taxa thought to be alien in Europe had been intercepted at European ports of entry. In the U.S., it has not been determined how the P. tentaculata detected in 2012 was introduced.  Authorities suspect it was introduced on plant imports.

These situations reinforce the importance of APHIS promptly finalizing its 2013 proposed revision to regulations governing imported plants [http://federalregister.gov/a/2013-09737]. The proposed rule would establish APHIS’ authority to require foreign plant suppliers to adopt “critical control point”-type systems approaches to improve the cleanliness of plants intended for export to the United States.  Such an approach is authorized by both a North American regional standard (RSPM#24; go here) and an international standard (ISPM#36; go here) for plant protection.

You can give APHIS a push by writing your member of Congress and Senators. Ask them to urge the Secretary of Agriculture to finalize this proposal.

As regards plants being shipped within the country, the U.S. nursery trade is working with federal and state regulators to develop and encourage adoption of similar, but voluntary, integrated systems approaches to minimize pest presence on plants being sold interstate. This proposed approach is being tested by eight nurseries across the country. However, full adoption is still years away. To learn more about the “SANC” program (“A Systems Approach to Nursery Certification”), go here.

 

See also http://www.suddenoakdeath.org/welcome-to-calphytos-org-phytophthoras-in-native-habitats/

SOURCES

Jung, T. et al. 2015 “Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora disease” Forest Pathology. November 2015; available from Resource Gate

Knaus, B.J., V.J. Fieland, N.J. Grunwald. 2015. Diversity of Foliar Phytophthora  Species on Rhododendron in Oregon Nurseries. Plant Disease Vol 99, No. 10 326 – 1332

 

Posted by Faith Campbell

When will invasive species get the respect they deserve from conservationists?

i`iwi birdblogger i`iwi in Hawai`i

photo from www.TheBirdBlogger.com; used with permission

 

Evidence is growing that invasive species are among THE major threats to conservation goals worldwide.

In 2015 the IUCN called invasive species the second most significant threat to those World Heritage sites around the world that have outstanding natural values. (Poaching is the greatest threat.) My October 21, 2015 blog showed that the IUCN report actually underestimated the impact of invasive species. I listed briefly the principal invaders in several U.S. National parks. Earlier blogs criticized the National Park Service for failing to regulate the movement of firewood (August 2015) and described the invasive threat to Hawai`i (earlier in October 2015).

Now a second study shows invasive species are a principal driver of species extinction. The authors assessed the prevalence of alien species as a driver of extinctions among plants, amphibians, reptiles, birds, and mammals (which are the best-studied taxa) post-1500 AD. Overall, 58% of extinct or extinct-in-the-wild species had been driven to extinction at least in part by invasive species. Invasive alien species are the second most common threat overall. Indeed, invasive species are the most common threat for vertebrate extinctions (62% of extinct or extinct-in-the-wild species faced threats from invasive species). Invasive species ranked fourth as a cause of extinction for plants: 27% of listed plant species were threatened by invasive species.

For those species with just a single driver of extinction, invasive species is the cause for 47% of mammals, 27% of birds, 25% of reptiles, and 17% of plants. In no case were invasive species identified as the sole threat to an amphibian species – although invasive species are their second highest threat.

Although the paper lists invasive species as second, their threat was virtually identical to that of “overexploitation”, the threat ranked first. That is, 124 out of 215 species studied were threatened at least in part by invasive species; 125 were threatened by overexploitation.

Other principal threats were overexploitation, agriculture, aquaculture, and – in the case of plants – residential and commercial development. Categories related to habitat loss ranked surprisingly low. Only 61 of the 215 cases listed agriculture and aquaculture as threats.

The authors reflect on whether invasive species are not themselves causal agents of extinction, but rather symptoms of the real causes, especially habitat destruction. They conclude that that is unlikely.

Instead, they suggest that invasive species impacts might often be underestimated, as many interactions – especially those between alien parasites and native hosts – are very hard to detect.

Not surprisingly, 86% of island endemic species had invasive species as one extinction driver. Nevertheless, continental organisms are also threatened — 14% of alien-related extinctions have been of species with mainland populations. These include eight amphibians, five birds, and six mammals. Most of these invader-threatened mainland organisms are from the Americas

Among the approximately 30 alien taxa named as extinction drivers are rats, cats, and trout as threats to other vertebrates such as birds and mammals. All three were also ranked highly as damaging invasives in the earlier IUCN report on World Heritage sites. Diseases – especially chytridiomycosis and avian malaria – were causal agents of extinction for amphibians and birds. Several herbivores – especially goats, sheep, and European rabbits – and alien plants were drivers of extinction for plant species.

Of course, outright extinction is not the only damage to biological diversity caused by invasive species. American chestnut, Fraser fir, and redbay are not extinct, but their ecological role has been virtually eliminated as the vast majority of these forest trees die off. Other tree taxa are on same road – ash and eastern hemlocks across wide expanses of their ranges; tanoaks; whitebark pines …

Invasive species pose major threats to biological diversity and other conservation goals. These damages are on top of the acknowledged threat of invasive species to agriculture, forestry, or economic groups. (See, for example, Lovett et al. 2016 discussed in my previous blog.) The role of invasive species in extinction described in this new paper suggest a long-standing bias among conservationists’ priorities. Too often, we have focused on species threatened by overexploitation – which is such easier to see and involves an obvious “villain”.

Nevertheless, a host of practical suggestions have been put forward to address the root causes of species introductions and spread. Often, these ask some or many of us to stop doing what we have been doing. But much meaningful conservation action requires someone to accept limits or to make sacrifices.

Will the conservation community – including grant-making foundations, federal and state agencies, and the many conservation non-governmental organizations ranging from the IUCN to local groups – now take up the challenge of implementing suggested actions and actively advocating for the funding needed for practical steps that will begin to bring this threat under control?

 

Sources

Bellard C, Cassey P, Blackburn TM. 2016 Alien species as a driver of recent extinctions. Biol. Lett. 12: 20150623. http://dx.doi.org/10.1098/rsbl.2015.0623 http://rsbl.royalsocietypublishing.org /

 

Lovett,G.M., M. Weiss, A.M. Liebhold, T.P. Holmes, B. Leung, K.F. Lambert, D.A. Orwig , F.T. Campbell , J. Rosenthal, D.G. McCullough, R. Wildova, M.P. Ayres, C.D. Canham, D.R. Foster, S.L. LaDeau, and T. Weldy. 2016. Nonnative forest insects and pathogens in the United States: Impacts and policy options. Ecological Applications, 0(0), 2016, pp. 1–19. DOI 10.1890/15-1176.1

Available at www.caryinstitute.org/tree-smart-trade

 

Posted by Faith Campbell

Cacti under Threat – Does No One Care?

Nearly 2 million square miles of ecologically significant and beautiful desert ecosystems straddle the U.S.-Mexico border regions. Cacti are either dominate or are extremely important components of these ecosystems. Two South American insects already present in the United States threaten to kill large numbers of these cacti and transform these desert ecosystems. Iconic species – prickly pears, saguaro, and organ pipe cacti – are at risk.

prickly pear cactus at Factory Butte; photo by S.E. Schlarbaum
prickly pear cactus at Factory Butte; photo by S.E. Schlarbaum

Flat-padded prickly pear cacti of the genus Opuntia are threatened by the cactus moth, Cactoblastis cactorum.
In 1989, the cactus moth was found in southern Florida, to which it had spread from the Caribbean islands (Simonson 2005). Since then, it has spread west as far as southern Louisiana. Two small outbreaks on islands off Mexico’s Caribbean coast have been eradicated. If it reaches the arid regions of Texas, it is likely to spread throughout the desert Southwest.
In Florida, the cactus moth has caused considerable harm to six native species of prickly pear, three of which are listed by the state as threatened or endangered. In the American Southwest, at least 80 species of flat-padded prickly pears are at risk (Simonson et al. 2005) and there are more in Mexico, which is the center of endemism for Opuntia.
These cacti support a diversity of pollinators as well as deer, javalina (peccaries), tortoises, and lizards. Prickly pears also shelter packrats –which in turn are fed on by raptors, coyotes, and snakes; nesting birds and plant seedlings. Their roots hold highly erodible soils in place (Simonson 2005).
The U.S. Department of Agriculture began trying to slow the spread of the cactus moth in 2005 – 15 years after it was first detected in Florida (Mengoni Goñalons et al. 2014).  However, the program never received an appropriation from Congress so funding was always inadequate. For several years, a patchwork of projects was stitched together: Mexico provided some funding; a volunteer network managed by Mississippi State University monitored lands along the Gulf Coast for the moth; and a laboratory operated by the Florida Department of Agriculture reared moths for research, sterile male releases and biocontrol host specificity testing.
The continuous funding problems led APHIS to abandon its regional program and focus on biocontrol, which is the only viable control measure in the desert Southwest where vulnerable cacti are numerous and grow close together. A newly described wasp, Apanteles opuntiarum (Mengoni Goñalons et al. 2014), is the most promising candidate.
Harrisia cactus mealybug might attack columnar cacti
The 2 million square miles of desert in Southwest United States and Mexico are home to more than 500 columnar cactus species in the Cactoideae (Zimmerman et al. 2010). Some are already endangered; others are totems of the desert, e.g., saguaro, organ pipe, and barrel cacti. The larger ones, particularly, play important ecological roles.
A second South American insect threatens columnar cacti in the Caribbean basin now and in the future could put others at risk in the American Southwest and Mexico: the Harrisia cactus mealybug (Zimmerman et al. 2010).
A mealybug in the genus Hypogeococcus has been killing several of the 13 columnar cactus species in southern Puerto Rico since 2005. Two are endangered species: Harrisia portoricensis and Leptocereus grantianus (USDA ARS). These cacti provide food or shelter for endemic bats, birds, moths and other pollinators (Segarra & Ramirez; USDA ARS). This mealybug is also now killing native cacti on the U.S. Virgin Islands (H. Diaz-Soltero pers. comm. August 2015).
Mealybugs in the same genus in Florida and Hawai`i do not attack cacti (University of Florida fact sheet; Hawai`i Department of Agriculture new pest report). In South America, though, insects in this genus feed on many columnar cacti, including ones in the genera Cereus, Echinopsis, Harrisia, Cleistocactus, Monvilea, and Parodia (USDA ARS; Zimmerman et al. 2010). Scientists are uncertain how many mealybug species are involved, which complicates efforts to determine the level of threat to columnar cacti on the U.S. mainland (H. Diaz-Soltero pers. com. August 2015). No one knows how vulnerable individual cactus species growing in the Southwest are to Hypogeococcus mealybugs (Golubov pers. comm. January 2011). Nor does anyone know whether natural enemies of mealybugs native to Mexico might also attack alien mealybugs and so prevent significant damage to native cacti (Zimmerman et al. 2010).
Still, the possible threat warrants studies to determine the vulnerability of these cacti to non-native mealybugs in the Hypogeococcus genus.
Meanwhile, scientists at the USDA ARS laboratory in Argentina have been searching for possible biocontrol agents but are stymied by the confusion over which mealybugs attach which cacti. Use of DNA sequencing and other tools should clarify these issues (H. Diaz-Soltero pers. comm. August 2015). However, no funds have been appropriated for this work, which has hindered progress (H. Diaz-Soltero pers. comm. August 2015).
To date, no organized constituency has advocated for protection of our cacti from these two pests. In the past I tried to persuade native plant societies, Nature Conservancy chapters, the leadership of the American Cactus and Succulent Society, and other groups that champion the desert to help lobby the Congress to fund USDA’s efforts. I was never successful.
Are Americans truly indifferent to the threat that many cacti in our deserts will be killed by non-native insects? Do they not realize that these threats must be countered before they reach the areas where cacti are dense and numerous?

Sources
California Plant Pest and Disease Report. 2005. Vol. 22 No. 1. Covering Period from July 2002 through July 2005.
Hawaii Department of Agriculture. 2006. http://hawaii.gov/hdoa/pi/ppc/2006-annual-report/new-pest-detections (accessed 11/1/10)
Mengoni Goñalons, C., L. Varone, G. Logarzo, M. Guala, M. Rodriguero, S.D. Hight, and J.E. Carpenter. 2014. Geographical range & lab studies on Apanteles opuntiarum (hymenoptera: braconiDae) in AR, a candidate for BC of Cactoblastis cactorum (Lepidoptera: Pyralidae) in North America. Florida Entomologist 97(4) December 2014
Segarra-Carmona, A.E., A. Ramirez-Lluch. No date. Hypogeococcus pungens (Hemiptera: Pseudococcidae): A new threat to biodiversity in fragile dry tropical forests. {title/org/other identifying information for Segarra-Carmona plus an entry for the pers. comm.}
Simonson, S.E., T. J. Stohlgren, L. Tyler, W. Gregg, R. Muir, and L. Garrett. 2005. Preliminary assessment of the potential impacts and risks of the invasive cactus moth, Cactoblastis cactorum Berg, in the U.S. and Mexico. Final Report to the International Atomic Energy Agency, April 25, 2005 © IAEA 2005
USDA Agriculture Research Service, Research Project: Biological Control of the Harrisia Cactus Mealybug, Hypogeococcus pungens (Hemiptera:pseudococcidae) in Puerto Rico Project Number: 0211-22000-006-10 Project Type: Reimbursable
Zimmermann, H.G., M.P.S. Cuen, M.C. Mandujano, and J. Golubov. 2010. The South American mealybug that threatens North American cacti. Cactus and Succulent Journal. 2010 Volume 82 Number 3

Posted by Faith Campbell