At the annual meeting of the National Plant Board in July, I learned that two new Phytophthora species have been detected in the United States. Questions remain about how each arrived.
Phytophthora austrocedrii
This species was detected in a nursery in Oregon, then traced back to a supplier in Ohio. Officials are trying to determine how it entered the country – and then spread.
In the United Kingdom, P. austrocedri has killed trees in the Juniperus and Cupressus genera. Damage is particularly significant at two sites in northern Scotland and in England’s Lake District. The principal host, Juniperus communis, is an important native species. It is already considered vulnerable. P. austrocedri has also been detected in Argentina, where it is killing the native Chilean or Patagonian cedar (Austrocedrus chilendris). The cedar species is the only one in the genus. Evidence indicates the pathogen was introduced to both Britain and Argentina; but its origin is unknown. Indeed, the species was first isolated by scientists as an unknown Phytopthora taxon on a juniper in an import/export nursery in Germany. All reported hosts are members of the Cupressaceae family (UK forest research website).
Of greater concern to Americans, P. austrocedri has also infected individual trees of Port-Orford cedar (Chamaecyparis lawsoniana). (UK forest research website).
Port-Orford cedar is a species endemic to a small range in southwestern Oregon and Northwestern California.
POC populations have been severely reduced over the past century by a different non-native Phytophthora, P. lawsonii. US Forest Service scientists recently announced that they have bred trees resistant to this pathogen – and offered seedlings for widespread planting.
Possible hosts in the Pacific Northwest – other than Port Orford cedar – include Juniperus californica, Juniperus grandis, Juniperus occidentalis, and Juniperus maritima – although the junipers might be limited to arid environments, where they would presumably be less vulnerable. https://plants.usda.gov/home/classification/15147
Research in Great Britain shows that P. austrocedri spreads in water and by movement of infected plants and contaminated soil. Footwear, camping equipment, and vehicle tires can all carry the pathogen. This makes the pathogen particularly difficult to control (this is another similarity with P. lawsonii).
Phytophthora abietivora
P. abietivora was originally found on a diseased Christmas tree (Fraser fir, Abies fraseri) in Connecticut in 2019. It has since been reported in Pennsylvania and Virginia; and in forest nurseries and Christmas tree plantations in Quebec and Ontario. The Canadians report that it has not caused disease (Canadian website). However, the Canadian representative at the National Plant Board meeting expressed concern and asked USDA APHIS to clarify what actions it is taking regarding this species.
(Natural populations of Fraser fir have been severely reduced over the past century by the balsam woolly adelgid.)
Fraser fir killed by balsam woolly adelgid; Clingman’s Dome, Great Smoky Mountains National Park
Several additional hosts have been identified, including balsam fir (Abies balsamea) and eastern hemlock (Tsuga canadensis); and deciduous or hardwood species: hickory (Carya sp.), flowering dogwood (Cornus florida), American witch hazel (Hamamelis virginiana), mountain holly (Ilex montana), red maple (Acer rubrum), silver birch (Betula lenta), American beech (Fagus grandifolia); and several oaks: white (Quercus alba), chestnut (Q. montana) and northern red oak (Q. rubra) (Canadian fact sheet).
According to the Canadian website, P. abietivora causes root rot and subsequent foliar chlorosis, discoloration, stem cankers, and sometimes tree decline and death. Determining which Phytophthora species is the causal agent of a tree’s symptoms requires laboratory testing. The Canadian fact sheet reports that wet, cool conditions provide ideal environments for P. abietivora. Like other Phytophthora species, P. abietivora can be spread through soil and water, as well as via infected plant material or pots or trays (particularly if soil remains on the equipment). The Canadian fact sheet has several photographs illustrating symptoms and additional sources.
Liriodendron tulipifera; photo by Evelyn Simak via Geograph
Phytophthora kernoviae
P. kernoviae was first detected in southwestern England in 2003. link In England, this pathogen has caused significant diseases in native Fagus sylvatica (European beech) and lesions on trunks of a European oak, Quercus robur. More worrying are the trunk lesions on the North American native yellow or tulip poplar (Liriodendron tulipifera) and lesions on foliage of Monterey pine (Pinus radiate), giant sequoia(Sequoiadendron giganteum), and several North American native shrubs, Rhododendron macrophyllum (Pacific rhododendron), R. occidentale (western rhododendron), R. catawbiense(Catawba rosebay) and Umbellularia californica (California bay laurel).
The infestation in Cornwall is sustained by heavy sporulation on the non-native shrub Rhododendron ponticum, which is invasive in woodlands. Worrying for Americans is the fact that P. kernoviae sporulates on three plant species native to West coast forests — Rhododendron macrophyllum, R. occidentale, and Umbellularia californica – as well as on R. catawbiense, which is native to the southern Appalachians.
USDA APHIS requested adoption of a “response plan” targetting P. kernoviae under the National Plant Disease Recovery System (NPDRS). This plan was adopted in 2008 and updated in 2015.
The recovery plans found the areas at highest risk are eastern slopes of the Appalachian Mountains because this area combines a native sporulating host and residential landscaping choices that are likely to include hosts that could transport the pathogen. A lower risk was identified for West Coast forests.
Because of this status, P. kernoviae is also a “priority” pest for surveys under the Cooperative Agricultural Pest Survey (CAPS) program. According to Purdue University’s “pest tracker” website four states have reported carrying out surveys for P. kernoviae in one or more years since 2016: Oregon, Tennessee, Pennsylvania, and Virginia. Surveys in Oregon were carried out in 2018 – 2020. In 2020 the counties surveyed included Curry County, where three strains of P. ramorum link have become established. The Purdue list is not certified as accurate or complete. To date, no surveys have detected P. kernoviae in the United States or – I believe – in Canada.
For details on existence of two clonal lineages of Phytophthora austrocedrii, see Henricot, B. A. Perez-Sierra, A.C. Armstrong, P.M. Sharp, and S. Green. Phytopathology 2017. 107:12, 1532-1540.
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at https://treeimprovement.tennessee.edu/
The House and Senate Agriculture committees are edging toward adopting the next Farm Bill, which is a year past due. Farm bills set policy, funding levels, and more, for 5 years. Each covers a wide range of subjects, including crop subsidies and insurance; food stamps; rural development (including wifi access); forestry policy; and research.
As you might remember, CISP aims to improve USDA’s programs — not only to prevent introductions of non-native tree killing pests and pathogens but also to better respond to those that enter the US and become established. I summarize here what the Senate and House bills have in common and how they differ on these issues.
I understand that the minorities, that is, House Democrats and Senate Republicans, have not accepted all aspects of the majorities’ drafts. So let’s take the opportunity to ask for better bills.
Both the House and Senate bills would “simplify” the USDA Forest Service’s obligations to prepare environmental assessments under the National Environmental Policy Act (NEPA). I have not analyzed which bill weakens NEPA more.
The Senate Bill: The Rural Prosperity and Food Security Act of 2024
The Senate bill addresses forest pest species in several places: Title II — Conservation, Title VII — Research, and Title VIII — Forestry. Here, I describe relevant sections, beginning with the section that partially addresses CISP’s proposal.
Title VIII — Forestry. Section 8214 requires the USDA Secretary to establish a national policy to counter threats posed by invasive species to tree species and forest ecosystems and identify areas for interagency cooperation.
This mandate falls far short of what we sought in a previous bill (S. 1238). However, depending on the exact wording of the bill and accompanying report, perhaps we can succeed in building a stronger program.
It is most important to obtain funding for applied, directed research into resistance breeding strategies, “bulking up,” and planting seedlings that show promise. Please contact your senators and ask them to work with the sponsors – Peter Welch [D-VT], Maggie Hassan [D-NH], and Mike Braun [R-IN] – to try to incorporate more of S. 1238 in the final bill.
The Senate bill contains other provisions that might be helpful for invasive species management – although not part of what CISP and our partners asked for.
Title VIII — Forestry. In Section 8506, the Senate bill would require that the US Departments of Agriculture and Interior continue working with Hawai`i to address the pathogen that causes rapid ‘ōhi‘a death. The section authorizes $5 million for each of the coming five fiscal years to do this work. Unfortunately, authorization does not equal funding. Only the Senate and House Appropriations Committees can make this funding available. Hawai`i’s endemic ‘ōhi‘a trees certainly face a dire threat. CISP is already advocating for funding to support resistance breeding and other necessary work.
Title VIII — Forestry. Sections 8247 and 8248 support USDA Forest Service’s nursery and tree establishment programs. My hesitation in fully supporting these provisions is that I fear the urge to plant lots of trees in a hurry will divert attention for the need to learn how to propagate many of the hardwood tree species that have been decimated by non-native pests. However, I agree that the U.S. lacks sufficient nursery capacity to provide anything close to the number of seedlings sought. Perhaps this program can be adjusted to assist the “planting out” component of our request.
Title VII — Research. Section 7208 designates several high-priority research initiatives. On this list are spotted lanternfly, and “invasive species”. A number of forest corporations have been urging Members of Congress to upgrade research on this broad category, which I believe might focus more on invasive plants than the insects and pathogens on which CISP focuses. How the two ideas are integrated will be very important.
Another high-priority initiative concerns the perceived crisis in failed white oak regeneration.
Title VII — Research.Section 7213 mandates creation of four new Centers of Excellence at 1890 Institutions. These are historically Black universities that are also land-grant institutions]. These centers will focus on: 1) climate change, 2) forestry resilience and conservation; 3) food safety, bioprocessing, and value-added agriculture; and, 3) food and agricultural sciences and the social sciences.
Title II — Conservation. Section 2407 provides mandatory funding (which is not subject to annual appropriations) of $75 million per year to the national feral swine eradication/control program (run by USDA APHIS’ Wildlife Service Division). I discuss this program in a separate blog.
The Senate bill also mandates use of several conservation and other programs to address the causes and impacts of climate change. This requirement is directly countered by the House Agriculture Committee’s bill (see below).
Title VIII — Forestry. This section contains none of the provisions CISP’ sought to USDA’s management of tree-killing non-native insects and diseases.
Instead, the House bill calls on the USFS to establish a comprehensive approach to addressing the demise of the giant sequoia trees.
Title VII — Research The House bill, like the Senate’s, lists the invasive species and white oak research initiatives as high priority. The House, unlike the Senate, does not include spotted lanternfly.
Title II — Conservation. As I noted above, the House bill explicitly rescinds all unobligated conservation funding from the Inflation Reduction Act. It reallocates these funds to the traditional conservation programs, e.g., the Environmental Quality Incentive Program and Watershed Protection and Flood Prevention. The bill would use these funds to support “orphan” programs – naming specifically the national feral swine eradication/control program. The House bill provides $150 million – apparently across the five years covered by the Farm Bill, so $30 million per year. Finally, the House allocates 60% of the hog management funds to APHIS, 40% to the Natural Resources Conservation Service.
Title X —Horticulture, Marketing, and Regulatory Reform. The House’s summary says it is taking steps to protect plant health. It does this by increasing funding for the grant program under the Plant Pest and Disease Management and Disaster Prevention Program – §7721 of the last (2018) Farm Bill. The increase would raise the amount of money available each year from the current level of $70 million to $90 million. These funds are mandatory; they are not subject to annual appropriations. Research, development, and outreach projects funded by this program have certainly added to our understanding of plant pests, hence to their effective management. However, they are usually short-term projects. Therefore they are not suitable for the long-term commitment required for resistance breeding programs. See here and here.
Title III — Trade. Here, the House bill exacerbates the current imbalance between trade promotion and phytosanitary protection. The bill doubles the authorized funding for USDA’s Market Access and Foreign Market Development programs. I concede that this measure probably does reflect a bipartisan consensus in the Congress to support robust programs for promoting agricultural exports.
Also under this Title, the House bill requires the USDA Secretary to conduct regular assessments to identify risks to critical infrastructure that supports food and agriculture sector. This might be helpful – although it is not clear that this assessment would include to threats to forest or urban trees not used commercially (e.g., for timber).
At a recent forum on biological control sponsored by the National Association of State Foresters (NASF), it was reported that participants noted several problems: insufficient funding, significant delays in refilling positions, inadequate research capacity, lack of brick-and-mortar infrastructure, and declining college enrollments in biocontrol-related studies. The NASF Forest Science Health Committee is developing a “Statement of Needs” document that NASF and others can use to lobby for funding to fill these gaps. I hope you will join them in doing so!
However, as I note above, empowering resistance breeding programs requires a long-term commitment, that is, a comprehensive alteration of policies and infrastructure – beyond annual appropriations.
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm
I have recently recent blogged several times about threats to regeneration of eastern forests. Most of the underlying studies stress the role of deer browsing as a major driver of suppression of native plant species and proliferation of non-native ones. Most studies discussed at a recent Northern Hardwood research forum (USDA, FS 2023b Proceedings) found that deer browsing overwhelms other disturbances, such as fire and canopy gaps that typically promote seedling diversity. Miller et al. also stressed the importance of the deer-invasive plant complex in interrupting regeneration in National parks. Reed et al. found that, on the Allegheny Plateau of western Pennsylvania, high deer densities at the time stands formed reduced tree species diversity, density, and basal area – changes that were still detectable decades later.
On the other hand, Hovena et al. found that at their study sites in Ohio, interaction between non-native shrubs and soil wetness overshadowed even the impact of deer herbivory on the species richness and abundance of seedlings.
Unlike the others, Ducey et al. don’t mention deer as a factor in their analysis of regeneration in a forest in the northern half of New Hampshire. They focus on the minimal impact of silvicultural management. Its effect is secondary to overall forest development as the forest ages. Is it possible that overabundant deer are not a factor in the Bartlett Experimental forest.
Some of the studies acknowledge the impacts of non-native insects and pathogens. The most thorough discussion is in Payne and Peet. They note that specialist pathogens have caused the loss of important tree species, specifically elms and dogwoods plus the impending widespread mortality of ash. Such mortality is resulting in drastic and long-lasting shifts in community dynamics.
Ducey et al. anticipate pest-driven reversals of increases over the decades of eastern hemlock (Tsuga canadensis) and American beech (Fagus grandifolia). Also, they expect that white ash (Fraxinus americana), which has a minor presence, will disappear.
Miller et al. also stressed the importance of emerald ash borer-induced suppression of ash regeneration in some National parks . The authors also noted the threat to beech trees from beech leaf disease in other parks. Hovena et al. state that the interaction between non-native shrubs and soil wetness was more influential than ash mortality in shaping woody seedling communities.
Reed et al. considered the role of non-native earthworm biomass on plant species’ growth.
But too many of the studies, in my view, make no mention of the probably significant role of non-native insects and pathogens.
It is perhaps understandable that they don’t address emerging pests that either have not yet or have barely reached their study sites. For example, Hovena et al. and Yacucci et al. [see below] noted growth of one native shrub, Lindera benzoin, in the face of the challenges presented by deer and invading plants. Neither acknowledges the approach of laurel wilt disease, which has not yet become established in Ohio (it has been detected on the Kentucky-Indiana border). Similarly, neither mentions beech leaf disease, although some of the plots studied by Hovena et al. are just east of Cleveland – where BLD was first detected. The location of the Yacucci et al. study is less than 50 miles away. The North Carolina forests studied by Payne and Peet are apparently too far east to be affected by beech bark disease and beech leaf disease is not yet established nearby.
Less understandable is the failure to mention loss of elms – which were abundant in riparian areas until killed off by Dutch elm disease – which was first detected in Cleveland!); or to discuss the impact of dogwood anthracnose. Their focus on the deciduous forest might explain why they don’t mention hemlock woolly adelgid – which is just now invading the area discussed by Reed et al. I suppose the demise of American chestnut was so many decades ago that it is truly irrelevant to current forest dynamics.
A new study raises anew these questions about whether inattention to the role of non-native pests has skewed past studies’ results. Yacucci et al. compared regeneration in a military installation (Camp Garfield), to the results in the surrounding second-growth forest. This choice allowed them to overcome one drawback of other studies: using deer exclosures that are small and of short durations. The military facility covers 88 km2. Inside it, deer populations have been controlled for 67 years at a density of 6.6 – 7.5 deer/km2. Outside, deer have been overabundant for decades. Populations have grown to densities estimated (but not measured) to be at least 30 deer/km2 – more than four times as high.
These authors established 21 experimental gaps in the low-deer-density area and 20 gaps outside the installation where deer densities are high. Some of the gaps in both low- and high-deer-density environs were located on wetter, seasonally flooded soils, some on drier sites. None of the forest sites had experience fire in recent decades.
Their findings support the importance of deer browsing as driver of changes to forest regeneration.
They found that at low deer densities, gaps develop a vigorous and diverse native sapling layer, including oaks. Total stem density of red and pin oaks was 13 times higher in these gaps than in gaps in high-deer-density locations. Oak saplings were growing into the subcanopy – that is, above deer browse heights. Saplings of other species – i.e., tuliptree (Liriodendron tulipifera), red maple, and ash (Fraxinus spp.) were also flourishing. Also present were dogwood (Cornus florida) and two native shrubs — Lindera benzoin and Rubus allegheniensis. One non-native shrub, buckthorn (Rhamnus frangula), also thrived at low deer densities. Other non-native plant species were far fewer; their cover was 80% lower. Overall, abundance, richness, and diversity of native herbaceous and woody species were 37–65% higher at the low-deer-density study sites. On average tree species were more than twice as tall as in high-deer-density plots.
In high-deer-density plots, non-native species were six times more abundant while native species richness was 39% lower. Diversity was 27% lower. Most native tree species were short in stature and in low abundance. The one exception was black cherry (Prunus serotina), which deer avoid feeding on. The cherry was 95% more abundant in these high-deer-density plots.
There were several surprising results. In most cases, neither years since gap formation nor habitat type (wet vs. dry) had a significant impact on plant diversity, richness, or abundance. The exception was that non-native plant species were more abundant in older gaps where deer densities were high. Yacucci et al. warn that this phenomenon is a potential threat to biodiversity since high deer density is now the norm across eastern forests.
The authors also note that fire has probably never been a factor in these forests, which are primarily beech-maple forests. Certainly there have been no fires over the past 70 years, either inside or outside the military installation.
Yacucci et al. did not discuss past or possible future impacts of non-native insects or pathogens. They did not mention emerald ash borer or dogwood anthracnose – both of which had been present in Ohio for at least two decades when they completed their study. Although they said their study forest was a beech-maple forest, they did not discuss whether beech are present and – if so – the impact of beech bark disease or beech leaf disease. Both of these are spreading in Ohio. The latter was originally detected in 2012 near Cleveland, just 50 miles from the location of Camp Garfield (between Youngstown and Cleveland, Ohio). As noted above, they also did they mention that Lindera benzoin is susceptible to laurel wilt disease.
Proposed solutions to deer over-browsing
Given the combined threat from widespread deer overpopulation and invasions by non-native plants, Yacucci et al. propose enlisting those military posts that regularly cull deer into efforts to conserve and regenerate native plants. Otherwise, they say, the prognosis for regeneration is poor.
Bernd Blossey and colleagues propose a more sweeping solution: implementation of a national policy to reduce deer populations on all land ownerships. They point out that overabundant deer:
disrupt the plant communities of affected forests – from spring ephemerals to tree regeneration;
promote disease in wildlife and people; and
lead to miserable deaths of deer on our highways, through winter starvation, and disease.
They call for federal leadership of coordinated deer-reduction programs. I discuss their proposal in detail in a separate blog.
SOURCES
Ducey, M.J, O.L. Fraser, M. Yamasaki, E.P. Belair, W.B. Leak. 2023. Eight decades of compositional change in a managed northern hardwood landscape. Forest Ecosystems 10 (2023) 100121
Hovena, B.M., K.S. Knight, V.E. Peters, and D.L Gorchov. 2022. Woody seedling community responses to deer herbivory, intro shrubs, and ash mortality depend on canopy competition and site wetness. Forest Ecology and Management. 523 (2022) 120488
Payne, C.J. and R.K. Peet. 2023. Revisiting the model system for forest succession: Eighty years of resampling Piedmont forests reveals need for an improved suite of indicators of successional change. Ecological Indicators 154 (2023) 110679
Miller, K.M., S.J. Perles, J.P. Schmit, E.R. Matthews, and M.R. Marshall. 2023. Overabundant deer and invasive plants drive widespread regeneration debt in eastern United States national parks. Ecological Applications. 2023;33:e2837. https://onlinelibrary.wiley.com/r/eap Open Access
Reed, S.P., D.R. Bronson, J.A. Forrester, L.M. Prudent, A.M. Yang, A.M. Yantes, P.B. Reich, and L.E. Frelich. 2023. Linked disturbance in the temperate forest: Earthworms, deer, and canopy gaps. Ecology. 2023;104:e4040. https://onlinelibrary.wiley.com/r/ecy
United States Department of Agriculture, Forest Service. 2023a. Proceedings of the First Biennial Northern Hardwood Conference 2021: Bridging Science and Management for the Future. Northern Research Station General Technical Report NRS-P-211 May 2023
Yacucci, A.C., W.P. Carson, J.C. Martineau, C.D. Burns, B.P. Riley, A.A. Royo, T.P. Diggins, I.J. Renne. 2023. Native tree species prosper while exotics falter during gap-phase regeneration, but only where deer densities are near historical levels New Forests https://doi.org/10.1007/s11056-023-10022-w
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm
I am belatedly reporting on the forest-pest projects funded by annual grants under the Plant Pest & Disease Management & Disaster Prevention Program ( of the Plant Protection Act). As usual, APHIS funded projects totaling $62.975 million in FY24. In total, 353 projects were funded. These projects represented 70% of the 504 project proposals submitted (the total funding sought was $106 M).
APHIS reserved $11 million for responding to P&P emergencies. I applaud this choice since the agency’s annual appropriation provides only a completely inadequate $1 million (or less) to cover emergencies.
APHIS notes that since initiation of the Plant Pest & Disease Management & Disaster Prevention Program in 2009, it has funded more than 5,500 projects with a total of nearly $870 million.
In FY24 the program funded 30 more projects than the 322 projects funded in FY23. blog 320 The FY24 allocation provides more than $1 million more for goal area 1S — Enhance Plant Pest/Disease Survey (from $14.4 million to $15.7 million). This was balanced by small decreases for the other goal areas: enhancing mitigation capabilities received $13.6 million; inspections at domestic sites important in invasive species’ spread received $6.3 million; pest identification and detection received $5.3 million; and outreach and education received $4.1 million. Projects safeguarding nursery production and those improving pest and disease analysis each received about $2 million.
By my calculation – subject to error! – about $7.5 million went to projects clearly dealing with forest pests [12% of total funding]. This is a welcome increase from FY23 – when funding of such projects reached about $6.5 million (a little over 10%). blog 320 Funding for tree pest projects might be higher. Some $1.9 million is allocated to surveys of grapevines and orchards — hosts of the spotted lanternfly (SLF). However, it is not clear whether these projects are focused on detecting and managing SLF; they might have a much broader goal. If we do include these projects, the total for tree-killing pests rises to $9.4 million — nearly 15% of the total.
Over both FY23 and FY24, the majority of funds went to similar topics: survey and management of sudden oak death in nurseries; surveys for bark beetles, Asian defoliators, and forest pests generally; and outreach programs targetting the spotted lanternfly. In FY24, just under $100,000 paid for efforts to develop tools for rapid detection of laurel wilt link to DMF in avocados – that is, in a crop rather than the natural environment.
No projects addressing tree or forest pests were funded in seven states or territories: Guam, Idaho, Nebraska, New Mexico, Rhode Island, South Dakota, and Utah. This was three fewer states than in FY23. In neither year do I know whether these states submitted proposals in this category that ended up not being funded.
In FY24, spotted lanternfly is by far the pest addressed by the most projects. As noted above, I can’t be precise about the number because of the lack of information about the 23 projects that fund pest surveys of grapes and/or tree crops that are SLF hosts. Eleven projects named SLF specifically. A final project (not included in above) is one funding registration of Verticillium nonalfalfae as a biocontrol for Ailanthus altissima – an invasive tree that is the preferred host of SLF.
The District of Columbia, Kansas, Missouri, and Oklahoma each had one tree pest project funded. In the cases of Kansas and Missouri, the single project was surveys for thousand cankers disease of walnut. Three other states — Iowa, Maryland, and Pennsylvania — also obtained funding to survey for TCD.
The single Oklahoma project concerned efforts to ensure that the sudden oak death pathogen(Phytopthora ramorum) is not present in nurseries. (An Oklahoma wholesaler was one of the hubs of this pathogen’s spread to 18 states in 2019). Eleven other states were also funded to survey their nurseries for P. ramorum: Alabama, Kentucky, Louisiana, Nevada, North Carolina, Ohio, Pennsylvania, South Carolina, Virginia, and West Virginia. P. ramorum is a “program pest” in 2024. That is, APHIS had designated it as a regulated pest for which the agency wished to fill knowledge gaps about its distribution. I note that last year APHIS published a risk assessment that downplayed the likelihood that P. ramorum would establish in the eastern states. Is APHIS seeking more information to test this conclusion?
In a separate case, Oregon received $76,000 to evaluating the threat to nurseries and forests arising from the presence in the state’s forests of two strains or lineages of P. ramorum that previously had not been extant in the environment of North America.
Another approximately 53 projects fund surveys for tree pests other than spotted lanternfly; these are often fairly general surveys, such as for woodborers or “Asian defoliators”. About ten projects fund management efforts – including evaluation of the efficacy of emerald ash borer biocontrol programs.
Last year I noted that two states – Mississippi and Nevada — had projects to survey the “palm commodity”. Hawai`i joined this group in FY24. The project descriptions don’t specify which pests are the targets. The South American palm weevil (Rhynchophorus palmarum) seems most probable; it is established in far southern California and neighboring Mexico. APHIS prepared a risk assessment on the species in 2012. link? In Hawa`ii, concern probably focuses on the coconut rhinoceros beetle (Oryctes rhinoceros). link? There are other threats to palms, e.g., the red palm weevil (Rhynochophorus ferrugineus), link? and a deadly Fusarium wilt. link?
California has native palms (Washingtonia filifera); southern states from Texas to at least South Carolina have native palmettos. Of course, many species of palms are important ornamental plants in these states, and dates are raised commercially.
Another “program pest” that I have blogged about in the past is box tree moth. link to blog 287 In FY24 five projects addressed this pest, including surveys and efforts to develop better control tools.
I am pleased by continued funding of projects trying to utilize biocontrol agents to protect two groups of cactus severely threatened by non-native insects: lepidoptera that attack flat-padded prickly pear cacti (Opuntia spp.) link to DMF and the mealybug that attacks columnar cacti of Puerto Rico and the Virgin Islands. link to DMF
I applaud the decision to fund projects focused on determining the efficacy of biocontrol projects. As noted above, three projects are asking these questions in the case of the emerald ash borer. link to DMF Another project funds production, release, and efficacy evaluation of biocontrol agents targetting Brazilian peppertree in Florida & Texas.
I am also pleased that three projects assist Washington State in its efforts to eradicate the invasion by giant hornets from Asia. link to blogs & Hornet Herald – no detections in 2023 … A company in California also received funding to developing hornet detection tools.
Nineteen projects funded outreach efforts, including continued funding for the “Don’t Move Firewood” program. In addition to those focused on spotted lanternfly, such projects also included other firewood programs, Asian longhorned beetle awareness, and the nursery industry.
I note that while California received funding for 27 projects, none dealt with any of several deadly tree pests extant in the state – goldspotted oak borer, polyphagous and Kuroshio shot hole borers, Mediterranean oak borer, and the palm weevils. Nor did Hawai`i obtain funding to address rapid ohia death. Did no one submit proposals to address any of the many issues impeding management of these killers?
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm
A California state legislator has proposed a bill to expand state efforts to counter invasive species. Should we support it – and others like it in other states?
The bill is Assembly Bill 2827 introduced by Assembly Member (and former Majority Leader) Eloise Reyes of the 50th Assembly District. She represents urban parts of southwestern San Bernardino County, including the cities of Rialto, Colton, and Fontana.
According to media reports, Reyes was prompted to act by the current outbreak of exotic fruit flies, which as of some months ago resulted in detections in 15 California counties.
The bill is much broader than agricultural pests, however. It would find and declare that it is a primary goal of the state to prevent the introduction, and suppress the spread, of invasive species within its borders. I applaud the language of the “findings” section:
(a) Invasive species have the potential to cause extensive damage to California’s natural and working landscapes, native species, agriculture, the public, and economy.
(b) Invasive species can threaten native flora and fauna, disrupt ecosystems, damage critical infrastructure, and result in further loss of biodiversity.
Paragraph (c) cites rising threats associated with increased movement of goods, international travel, and climate change — all said to create conditions that may enhance the survival, reproduction, and spread of these invasive species, posing additional threats to the state.
(d) It is in the best interest of the state to adopt a proactive and coordinated approach to prevent the introduction and spread of invasive species.
The bill calls for
The state agencies, in collaboration with relevant stakeholders, to develop and implement pertinent strategies to protect the state’s agriculture, environment, and natural resources.
The state to invest in research, outreach, and education programs to raise awareness and promote responsible practices among residents, industries, and visitors.
State agencies to coordinate efforts with federal, local, and tribal authorities.
However, the bill falls short when it comes to action. Having declared that countering bioinvasion is “a primary goal of the state”, and mandated the above efforts, the bill says only that the California Department of Food and Agriculture (which has responsibility for plant pests) is to allocate funds, if available, to implement and enforce this article. Under this provision, significant action is likely to depend on holding agencies accountable and providing increased funding.
Would this proposed legislation make a practical difference? I have often complained that CDFA has not taken action to protect the state’s wonderful flora. For example, CDFA does not regulate firewood to prevent movement of pests within the State. It has not regulated numerous invasive plants or several wood-boring insects. These include the goldspotted oak borer; the polyphagous and Kuroshio shothole borers; and the Mediterranean oak borer.
On the other hand, CDFA is quick to act against pests that might enter the state from elsewhere in the country, e.g., spongy moth (European or Asian), emerald ash borer and spotted lanternfly.
I hope Californians and the several non-governmental organizations focused on invasive species will lobby the legislature to adopt Assembly Bill 2827. I hope further that they will try to identify and secure a source of funds to support the mandated action by CDFA and other agencies responsible for managing the fauna, flora, and other taxa to which invasive species belong.
I applaud Ms. Reyes’ initiative. I hope legislators in other states will consider proposing similar bills.
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm
A British scientist has proposed a new way to conduct early pest detection surveillance that she thinks will better serve resource managers: prioritize ecosystems which would suffer the greatest alteration if a non-native plant pest decimated one or more plant species. She says scientists should focus on foundational species and maintaining habitat resilience.
Dr. Ruth J. Mitchell leads the Biodiversity and Ecosystems Group within the Ecological Sciences Department at the James Hutton Institute in Aberdeen, Scotland. The Institute works on issues relevant to sustainable management of natural resources. I provide a full citation of her article at the end of the blog.
Dr. Mitchell’s focus is on protecting biological diversity. She worries that introduced plant pests can drive large-scale declines in native plant species. She mentions several examples, including chestnut blight and ash decline. Those declines, in turn, can cause a range of cascading effects on associated species that use the host plant for feeding, breeding and shelter, and on ecosystem functioning. To be prepared to counter this level of risk, managers of natural habitats need to know which habitats and plants are at greatest risk in order to prioritize surveillance of the most likely human actions and sites; and allocate resources to address the most damaging invasions.
Her proposal: prioritize host plant species or habitats which ecological theory indicates an invasion would have the greatest ecological impact. In other words, focus on “foundational species” — plant species that drive key ecosystem functions; or low (plant) diversity habitats — based on the assumption that diverse communities are more stable and resilient than less diverse communities.
Mitchell notes that ecological theory posits that if a foundation species is lost or declines, its disappearance will have a greater effect on the ecosystem than if non-foundation species are impacted. She believes that although there is no list of foundation species, scientific staff can develop appropriate lists for their site. For her study, she made the simplistic assumption that those species that occur at high abundance are most likely to be foundation species. Regarding the second, habitat-resilience criterion, Mitchell assumed that a pest which eliminates a plant species in a low-diversity habitat is likely to have a greater ecological impact on that habitat’s functioning than would extinction of a species in a high-diversity habitat, which is likely to have redundancies.
Mitchell asserts that these approaches to surveillance take account of an invasion’s impacts on broader associated species and ecosystem functions – on biodiversity broadly. These suggested methods have other advantages, too. They avoid the bias in existing lists of pests, which consist predominantly plants of commercial importance; and they don’t need to be updated frequently.
Mitchell identifies four ways to prioritize surveillance efforts based on the potential host rather than the potential pest. The surveillance monitoring might target:
(1) Plant genera known to host the pests (including pathogens) most likely to establish (Host-pest);
(2) Habitats harboring hosts for the greatest number of pests most likely to establish (Habitat-pest);
(3) Plants classed as foundation species (Foundation-species);
(4) Habitats with low plant species diversity and hence low resilience (Habitat-resilience).
Mitchell analyzed the damage that 91 pest species might cause to plant species which occur at 25% or higher cover in 12 broad habitat types in the United Kingdom. As a case study, she also looked at 22 vegetation communities within one of those habitat types (heathland). (See the article for a discussion of how she derived her list of 91 pests, their hosts, and the entity responsible for designating the habitat types.)
For both hosts and habitats, Mitchell compared results of two approaches: (a) assessment based on lists of known known pests; and (b) assessment based on potential ecological impact. Surveillance based on known risks i.e. lists of plant pests(i.e., the Hosts-pest and Habitat-pest methods) assumes that scientists have a complete list of pests, their risk of establishment, and their impacts. We know that is not the case. As an illustration, Mitchell’s review of the literature identified 142 insects or pathogens hosted by plant genera present on British moorlands that are not listed as pests by the appropriate British authority, the UK Plant Health Risk Register (PHRR).
To conduct a “Foundation-species” surveillance program, one must first identify foundational plant species. Mitchell defined those as species that constitute more than 75% cover in any plant community. (While this is admittedly an oversimplification, Mitchell says that the loss or severe decline of such abundant species will have a major impact on community composition.) One then prioritizes surveillance of these species – regardless of whether they are at risk from a known pest. This method emphasizes attention to potential impact to the habitat or plant community. Furthermore, this approach accommodates detection of the ‘known unknown’ pests.
To conduct a “Habitat-resilience” surveillance program, one must first identify the number of species in each habitat or vegetation community that occur at more than 25% cover. One then prioritizes surveillance of those habitats with the lowest average species diversity.
Differences in results
When basing the analysis on lists of known pests threatening all 12 habitat types, two genera stood out as at particular risk: Prunus and Solanum. Each consists of hosts supporting more than 20 of the 91 pests. Another 17 genera comprised hosts of six or more pests. Many of these genera include species that are important in ornamental horticulture or production forestry. Mitchell considers this a flaw. She points out that different genera ranked highest under this system when the focus narrowed to heathland communities. In heathlands, the genera comprising hosts of the most pests were Calluna, Erica, Festuca and Vaccinium.
I note that from my perspective – concern about pests that kill native trees – several of the 17 genera included in the “known pests” analysis do raise alarm: Acer, Salix, Ulmus, Fraxinus, Pinus, Quercus, Betula, Viburnum, and Juniperus.
Mitchell then tested the results of focusing on habitat types where the highest number of pests were likely to become established. This method gave highest priority to woodlands – because plants in this habitat type can host 87 of the 91 pests. The second priority should be open habitats (defined as disturbed habitats, arable weed communities, weedy pastures, paths, verges, wasteland and urban habitats). Plants in the “open habitat” type can host 54 pests. (While Mitchell did not specify whether she excluded non-native plant species from her calculations, she does write generally about impacts on native flora – so I believe she did.)
Looking specifically at the 22 heathland vegetation communities, Mitchell identified four communities as able to host the greatest number of pests so deserving surveillance priority.
When she focused on “foundation species”, Mitchell found a range of plant species that occur at 75% or greater cover in each habitat. Again, the highest number (71 species) occur in woodlands; the lowest (11 species) grow in Calcicolous grasslands. In the 22 heathland plant communities, the number of plant species meeting this criterion numbered fewer than five in each. Two communities have no “foundation” species for surveillance since no vascular plant species that occur at 75% cover. In both the habitat and community cases, the surveillance priority of managers of each habitat type would concentrate on the species that fit this criterion for the appropriate biome.
Finally, Mitchell identified those habitats or communities with the lowest species richness / fewest species as being at greatest risk of unravelling if they lose one or more species to an introduced pest. The data indicated these to be the Salt Marsh and Swamps and tall-herb fens systems. At the other end of the spectrum, Mesotrophic grasslands and Woodlands have the lowest priority for surveillance because they are species-rich. Of course, communities within a habitat type vary greatly in their species richness and associated resilience. For example, the one heathland community which has only two species occurring at 25% or greater cover has a higher priority than the communities with more such species.
Mitchell asserts that prioritizing plant species or habitats for surveillance based on potential ecological impact rather than risk (known pests) provides a less biased process and allows for the detection of the known unknowns pests. The resulting set of priority surveillance targets differs significantly from the set developed by reliance on pest lists. For example, looking at heathland communities, the Host-pest and Foundation-species methodologies share only three of 24 host genera. The differences arise from the PHRR’s bias oflisting predominantly species relevant to agriculture, horticulture, or forestry. None of these genera is listed under the Foundation-species methodology.
Since trade in plants for planting is the main pathway of introduction of non-native pests, Mitchell concedes that plant species in natural habitats that are closely related to species of commercial importance might be more threatened than other species. However, such an approach takes no account of the potential for a pest to jump hosts.
Prioritization based on potential ecological impact rather than known risk has many advantages. The Foundation-species method prioritizes those plant species whose decline would have the greatest impact on wider biological diversity, ecosystem function and service delivery. That is, it incorporates consideration of the wider risks to the whole ecosystem rather than just the risk to a specific plant species. The Habitat-resilience method similarly takes account of the wider ecosystem level impacts, targeting those habitats or communities that might recover less quickly
On a practical level, these approach do not require surveyors (who might be citizen scientists or land manager) to identify specific pests. Instead, the surveyors report signs of unhealthy-looking plants to the relevant authorities, who then identify the cause.
These methods address a universal problem for plant health: the many pests that are previously unknown before their emergence in new regions and on naïve hosts. Mitchell briefly mentions scientists’ continue struggle to identify traits that can forecast potential pest impacts. [See my blogs re: studies by Mech, Schulz, Raffa]
Mitchell suggests several ways to adapt these approaches to other countries or improve their targetting. First, scientists can link various pest/host databases (e.g., EPPO or CABI databases) to landcover or biome data and national or regional vegetation classification systems to make the system appropriate for their country or region. Incorporating attention to dirty equipment and movement of soil &/or plants is fitting at sites undergoing habitat restoration.
It is possible to refine the “foundation species” approach by applying a trait-based approach. She names two examples.
Finally, the Habitat-resilience method could be enhanced by integrating metrics of plant phylogenetic and functional diversity to the idea functional redundancy.
Mitchell stresses the need to unite efforts by many agencies and stakeholders within each country, as well as across political boundaries. She asserts that such collaborative efforts are more efficient / less costly, so lessening the restrictions imposed by resource limits. She also advocates reliance on citizen science and “passive surveillance” or chance observations by professionals agents, land-users and owners. These steps can facilitate large-scale surveillance that would otherwise be financially infeasible.
Mitchell highlights the difficulties imposed by the division of responsibilities. Usually the National Plant Protection Organization (NPPO) is responsible for early detection surveillance. The agency’s goal is to detect pests sufficiently early to facilitate eradication – or at least effective control. Its program is linked to regulatory requirements under the international plant health system. link to blogs & FF reports While the NPPO’s responsibilities include both cultivated and uncultivated (wild) plants, in many countries the NPPO prioritizes plants with commercial value. (This is certainly true in the United States – see my previous blogs & the Fading Forest reports – links provided below; and apparently the United Kingdom [Dr. Mitchell’s article] and Australia.) Protecting plant health in habitats is usually the task of conservation organizations. Mitchell calls for unifying these programs. CISP is advocating draft legislation that aims to fix this gap in the U.S. link to Welsh bill
What do you think? Is this approach as promising as Dr. Mitchell believes? Is it feasible?
I certainly concur that pest-based surveillance ignores the various categories of “unknown” pests and focus on commercially important species to the detriment of ecologically important ones. However, can such a system provide “early detection” of introduced pests? We have learned that insects and pathogens causing noticeable damage in natural environments have probably been present in a country or region for years – or decades. Perhaps these ecosystem-based criteria should be applied as guidance for selecting species to be monitored in “sentinel plant” programs. The plantings would be established in situations likely to receive pests early in their invasion process, e.g., warehouse districts (for pests in wood packaging) and ornamental nurseries that import growing stock.
Mitchell says the same issues pertain with regard to wildlife disease. See her article for sources.
SOURCE
Mitchell, R.J. 2024. A host-based approach for the prioritization of surveillance of plant pests and pathogens in wild flora and natural habitats in the UK. Biol Invasions (2024) 26:1125–1137 https://doi.org/10.1007/s10530-023-03233-x
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm
In February 2024 the European Parliament approved legislation outlawing “ecocide” and providing sanctions for environmental crimes. Member states now have two years to enshrine its provisions in national law.
The new rules update the list of environmental crimes adopted in 2008 and enhance the sanctions. The goal is to ensure more effective enforcement. Listed among the offenses are:
the import and use of mercury and fluorinated greenhouse gases,
the import of invasive species,
the illegal depletion of water resources, and
pollution caused by ships.
This action followed an in-depth analysis of the failures of the previous EU environmental directive, first adopted in 2008 (Directive 2008/99/EC). The review found that:
The Directive had little effect on the ground.
Over the 10 years since its adoption few environmental crime cases were successfully investigated and sentenced.
Sanction levels were too low to dissuade violations.
There had been little systematic cross-border cooperation.
EU Member states were not enforcing the Directive’s provisions. They had provided insufficient resources to the task. They had not developed the needed specialized knowledge and public awareness. They were not sharing information or coordinating either among individual governments’ several agencies or with neighboring countries.
The review found that poor data hampered attempts by both the EU body and national policy-makers to evaluate the Directive’s efficacy.
The new Directive attempts to address these weaknesses. To me, the most important change is that complying with a permit no longer frees a company or its leadership from criminal liability. These individuals now have a “duty of care”. According to Antonius Manders, Dutch MEP from the Group of the European People’s Party (Christian Democrats), if new information shows that actions conducted under the permit are “causing irreversible damage to health and nature – you will have to stop.” This action reverses the previous EU environmental crime directive – and most member state laws. Until now, environmental crime could be punished only if it is unlawful; as long as an enterprise was complying with a permit, its actions would not be considered unlawful. Michael Faure, a professor of comparative and international environmental law at Maastricht University, calls this change revolutionary.
Another step was to make corporate leadership personally liable to penalties, including imprisonment. If a company’s actions cause substantial environmental harm, the CEOs and board members can face prison sentences of up to eight years. If the environmental harm results in the death of any person, the penalty can be increased to ten years.
Financial penalties were also raised. Each Member state sets the fines within certain parameters. Fines may be based on either a proportion of annual worldwide turnover (3 to 5%) or set at a fixed fine (up to 40 million euros). Companies might also be obliged to reinstate the damaged environment or compensate for the damage caused.Companies might also lose their licenses or access to public funding, or even be forced to close.
Proponents of making ecocide the fifth international crime at the International Criminal Court argue that the updated directive effectively criminalizes “ecocide”— defined as “unlawful or wanton acts committed with knowledge that there is a substantial likelihood of severe and either widespread or long-term damage to the environment being caused by those acts.”
Individual member states also decide whether the directive will apply to offences committed outside EU borders by EU companies.
Some members of the European Parliament advocate for an even stronger stance: creation of a public prosecutor at the European Union level. They hope that the Council of Europe will incorporate this idea during its ongoing revision of the Convention on the Protection of the Environment through Criminal Law. To me, this seems unlikely since the current text of the Convention, adopted by the Council in 1998, has never been ratified so it has not come into force.
The Council of Europe covers a wider geographic area than the European Union – 46 member states compared to 27. Members of the Council of Europe which are not in the EU include the United Kingdom, Norway, Switzerland, Bosnia-Hercegovina, Serbia, Kosovo, Albania; several mini-states, e.g., Monaco and San Remo; and countries in arguably neighboring regions, e.g., Armenia, Azerbaijan, Georgia, and Turkey.
While I rejoice that invasive species are included in the new Directive, I confess that I am uncertain about the extent to which this inclusion will advance efforts to prevent spread. The species under consideration would apparently have to be identified by some European body as “invasive” and its importation restricted. As we know, many of the most damaging species are not recognized as invasive before their introduction to a naïve environment. On the other side, the requirement that companies recognize new information and halt damaging actions – even when complying with a permit! – provides for needed flexibility.
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm
Recently I posted a blog on a paper by Paulo Vieira et al., reporting how the nematode Litylenchus crenatae subsp. mccannii (Lcm) [causal agent of beech leaf disease (BLD)] distorts the leaves of affected American beech trees (Fagus grandifolia). Now Leila Rose Fletcher and her colleagues have confirmed these structural changes and discussed how they might affect the anatomy and physiology of the leaves and harm the tree. For the full details, see this 2024 publication, cited at the end of this blog. Both articles contain stunning photographs of diseased leaf structures.
As Dr. Fletcher pointed out on a recent call involving most scientists and conservationists working on BLD, plant growth depends on the plant’s success in gaining more carbon (through photosynthesis) than it expends during growth, cell maintenance (respiration), and sugar storage. When plants open the stomata on their leaves to take in CO2 from the atmosphere, they lose water from the interior of their leaves.
Her team discovered that BLD-related leaf distortions reduced the tree’s carbon balance in two ways.
Two impacts of the nematode
First, alterations of the leaf structure reduce the tree’s photosynthetic rate (assimilation of carbon). The photosynthetic rate in affected leaves was 61% lower than in healthy leaves. The impact is heightened by the thinning of the beech tree’s canopy due to abortion of many leaf buds.
While veins in diseased leaves are also altered by BLD, the data in Fletcher et al. indicate that the main limitation on photosynthesis in symptomatic leaves is not from a decreased water supply, but from several limitations on stomatal exchange of CO2 with the atmosphere. First, stomata on symptomatic portions of diseased leaves are less dense, which means there are fewer openings through which CO2 can enter the leaf.
Second, the diseased leaves are thicker, meaning that once inside the leaf, CO2 molecules must travel farther from the stomatal pores to reach the photosynthetic cells. Fletcher et al. did not assess the possibility (raised in a separate study by Carta, et al.) that the stomata that are present are deformed, and that this might impact their function.
In addition, the deformed leaves demand more resources to grow and function. Production of the multiplicity of cells in affected portions of the leaf (these portions are 249% thicker than normal leaves) uses resources the tree would otherwise put into growth. In fact, the more severely symptomatic an individual leaf is, the more carbon the plant allocates to that leaf.Furthermore, the additional cell layers also appear to increase “operating costs” of these leaves, as seen in the higher respiration rate per unit leaf area. Finally, if the tree sheds deformed leaves and forms new ones, this further diverts resources.
Questions seeking answers
How is nematodes’ influence localized to domains bounded by second-order veins (large veins that branch off the central vein) – symptomatic and asymptomatic tissue in adjacent domains in the same leaf? Fletcher et al. propose that the presence of the nematode influences the physical or hormonal regulation of leaf development – but after the development of primary and secondary order veins (since they are not distorted). They place a high priority on investigating the tree’s hormonal signaling that might be disrupted by the nematode.
Given the carbon imbalance that the data in Fletcher et al. suggest might arise over time, will symptomatic trees face carbon shortages, and if so, will this eventually lead to mortality? Studies analyzing the non-structural carbohydrate (stored sugar) concentrations in symptomatic beech are urgently needed to explore this possibility.
What is the impact of beech trees’ suboptimal vigor – short of mortality – on composition of plant communities and animals reliant on beech leaves and beechnuts? One possible causal factor raised by Fletcher et al. is reduced development of symbiotic relationships with ectomycorrhizal fungi, which can also reduce production of beech nuts. Dr. Fletcher concedes that there have been no studies yet of these possible effects. I add that many animals also depend on tree cavities – which are also common in beech trees.
SOURCES
Carta, L.K., S. Li, J. Mowery. 2023. Chapter 8 – Beech leaf disease (BLD), Litylenchus crenatae and its potential microbial virulence factors. In F.O. Asiegbu & A. Kovalchuck (Eds.), Forest microbiology Vol. 3 (PP. 183-192) Academic Press. https://doi.org/10.1016/B978-0-443-18694-3.00018-3
Fletcher, L.R. A.M. Borsuk, A.C. Fanton, K.M. Johnson, J. Richburg, J. Zailaa, C.R. Brodersen. 2024. Anatomical & physiological consequences of beech leaf disease in Fagus grandifolia L. Forest Pathoklogy. 2024;54:e12842 https://doi.org/10.1111.efp.12842
Vieira P., M.R. Kantor, A. Jansen, Z.A. Handoo, J.D. Eisenback. (2023) Cellular insights of beech leaf disease reveal abnormal ectopic cell division of symptomatic interveinal leaf areas. PLoS ONE October 5, 2023. 18(10) https://doi.org/10.1371/pone.0292588
U.S. imports in 2023 fell about 13% from 2022 levels, returning to approximate pre-pandemic 2019 levels (Mongelluzzo 2024). The 2023 total was 24.2 million TEUs, (a united equal to twenty-foot container) compared to nearly 28 million TEUs in the previous two years (JoC.com February 2024). Imports from Asia in 2023 totalled 16.2 million TEUs. This was above the 2019 level (15.9 million TEUs) but below the more than 18.5 million TEUs in 2022 and 2021 (Mongelluzzo 2024).
This decline in imports from Asia reflected trends in the first months of 2023. This trend reversed sharply in October; during that month, containerized imports were 12.4% higher than in October 2022, even 1.1% higher than in pre-COVID October 2019 (Mongelluzzo, 2023). The upward trend continued through November: U.S. imports from Asia that month were 10.8% higher than the same month in 2022 (Journal of Commerce).
New Shipping Routes = More Possible Pests
Proposed new shipping routes will expand the range of pests that can be introduced to eastern ports. For example, in November 2023, the Indian company Ocean Network Express announced plans to begin direct shipments from India to the Ports of New York-New Jersey, Savannah, Jacksonville, Charleston, and Norfolk. Expected cargo includes electronics, apparel, textiles, and foods. (Angell, 2023a) Have USDA authorities evaluated what pest species might be introduced from India?
Traders also expect rising trade volumes from South America in response to shifts in supply chains. Industries include textiles, pharmaceuticals, renewable energy, information technology, and agriculture.
The U.S. is importing more chilled produce from the west coast of South America to meet demand when these fruits are out-of-season in the U.S. The number of refrigerated containers rose to 395,572 TEUs (equivalents of twenty-foot containers). (Knowles. 2023) The Port of Savannah is actively courting these imports; it can now handle more than 3,000 refrigerated containers at one time and is expanding its capacity (Griffis 2023). Chile has a Mediterranean climate similar to that of California; Dr. Mark Hoddle reports several pests of avocado are found in neighboring Peru.
Problems in the canals likely to push trade from Asia back to California ports
In an editorial published on January 25, 2024, The Washington Post reports that drought has caused water levels in the Panama Canal to fall below what is needed to operate the locks. In normal years, about 5% of global maritime trade passes through the canal. This includes nearly half the containers shipped from northeast Asia to the eastern United States. The reduction in numbers of ships moving through the Canal has affected supply chains in agriculture and energy. The situation is further complicated by wars in the Middle East hampering shipments through the Suez Canal.
The Post describes the Panamanian government’s efforts to buttress the canal, which is a major source of income. Droughts elsewhere are also impeding transport, e.g., the Amazon, Rhine, and Mississippi rivers. In the Post’s view, “threats to global growth will make it harder to … respond to poverty and hunger. … Ultimately, prevention, by arresting the emission of planet-warming greenhouse gases, is the only way to stop the list of looming climate-related threats to the global economy from getting even longer.”
Here, my focus is on what this means for volumes of ships and containers visiting ports in the eastern United States – and the associated risks of pest introductions.
Ambitious Plan for Eastern Ports
As I have pointed out in previous blogs [on the website home page, scroll below the “Archives” to “Categories”, click on “wood packaging”, especially this one], ports in eastern and Gulf Coast states have been eagerly conducting dredging operations and making other preparations to attract large container ships bringing goods from Asia. As of just a few months ago, several ports had ambitious plans. The Port of Virginia will reach a depth of 55 feet this year (Angell, 2023b). The Port of Charleston already has a 52-foot depth. Nevertheless, the port authority hopes to further deepen the channel so that it can quintuple its capacity over a decade — from 500,000 TEUs to 2.5 million TEUs (Anonymous, 2024). The Port of New York-New Jersey has approved $19 million to study deepening the ship channels from 50 to 55 feet. The Port Authority hopes to persuade Congress to share the costs (Angell, 2023b). None of the reporting mentions any consideration of the possible pest risk despite past disasters – e.g., introduction of the redbay ambrosia beetle to Savannah or Asian longhorned beetle to Charleston.
The proportion of total U.S. imports going to West Coast ports in 2023 was 53.6% (Mongelluzzo, 2023). Journal of Commerce’ long-time analyst Bill Mongelluzzo expects the effective closure of both the Suez (attacks on shipping) and Panama canals will push more imports from Asia to the Ports of Los Angeles and Long Beach. These linked ports now handle 32% of all U.S. imports. Mongelluzzo expects the increased volume to create new congestion problems (Mongelluzzo 2024).
SOURCES
Angell, M. 2023a. ONE readies Indian-U.S. East Cost service as part of 2024 network rollout. Journal of Commerce. November 27, 2023.
I have advocated for considerably expanding efforts to breed trees resistant to non-native pests (including pathogens) for a decade. Again and again, I and others have pointed out the dire consequences for our forests if we Americans do not rise to the challenge.
In 2014, Scott Schlarbaum – coauthor of Fading Forests III – American Forests: What Choice Will We Make? warned that without restoration becoming an integral part of a strategy addressing non-native plant pests, American ecosystems are doomed to continuing transformation. Once established, a non-native pest is never eliminated, but its impact can be reduced through a combination of measures – as long as support is made available. Scott advised initiating a germplasm conservation strategy when invasion is imminent or once the pest is likely to become a resident pest. (See Chapter 6).
I have posted seven blogs since August 2021 describing the current status of various efforts and urging the U.S. Government and conservation organizations to step up. [To view these blogs, go to www.nivemnic.us, scroll below Archives to “Categories” and click on “resistance breeding.”
More, and Recent, Voices: Implications of Not Acting
More recently, several USDA Forest Service (USFS) experts, including Richard Sniezko, C. Dana Nelson, and Jennifer Koch, have published articles making the same point. These scientists note that many of the decimated species were formerly among the most common trees in our forests. Therefore, the cumulative effect of their disappearance on forest species composition and function is multiplied.
One blog, posted in 2022, is particularly pertinent. It summarizes a special issue of the journal Plants, People, Planet devoted to resistance breeding. The opening essay, by R.J.A. Buggs, concisely reviews six major reasons why so many believe that resistance breeding is a failed strategy.
Others say there have been successes – all through application of classic tree improvement measures, not “genetic engineering.” Pike, Koch and Nelson (2021) list as successes Port-Orford-cedar (Chamaecyparis lawsoniana), the western five-needle pine species, koa (Acacia koa), and resistance to fusiform rust (Cronartium quercuum f. sp. fusiforme) in the commercially-important loblolly (Pinus taeda) and slash (P. elliottii) pines. They also cite encouraging progress by The American Chestnut Foundation (TACF) through backcross breeding of America and Asian chestnuts and a USFS/private foundation effort to expand the genetic base of American elms (Ulmus americana). I regret to say this, but some of these efforts seem to me to be still in experimental stages or — at best — early in widespread – ‘though still experimental — plantings.
Participants in a 2021 Purdue University workshop have again called for greatly expanding breeding. See the special issue of New Forests, Vol. 54 Issue 4. Once again, experts reiterate the urgency of acting, then outline the opportunities and challenges.
In one of the articles (Jacobs et al.) several people – including me! – note that several keystone tree species or genera in North America and Europe have been driven to functional extinction by non-native pests. By this we mean they are no longer sufficiently abundant and/or of adequate size to reproduce sexually or perform their ecological function. Examples include – on both continents – ashes (Fraxinus) and elms; and on North America – American chestnut (Castanea dentata), butternut (Juglans cinerea), and whitebark pine (Pinus albicaulis).If these threats are left unchecked, these at-risk tree species might develop truncated ranges, lose genetic diversity, and face becoming threatened, endangered, or extinct.
In another article, Nelson says the question that should be asked about applying genetic engineering (GE) techniques to tree breeding is whether we should let a species be reduced to a marginal role — or disappear — when GE provides a solution to saving and restoring the species. His case study is a detailed history of TACF’s development of a transgenic American chestnut (called “Darling 58”). He points out that decades of breeding efforts were based on the hope of developing blight resistance within the native gene pool or to obtain resistance from related species through hybridization. However, those efforts have not yet provided trees suitable for restoring the “king of the Appalachian forest” to native landscapes. Nelson wrote his description before TACF discovered flaws in the GE trees they had been working with and decided to pursue different GE “lines” (see below).
Barriers
The overall strategy is clear. Schlarbaum, Sniezko, and Dana Nelson all describe essentially the same steps, built on the same kinds of expertise and facilities.
Of course, each species will require years of input by a range of experts. These challenges are not trivial. However, the experts named above agree that the principal barrier is the absence of sustained, long-term commitment of resources and facilities. With sufficient resources, many of the scientific challenge can be overcome for at least some of the species at risk.
So, what are the scientific challenges? First, scientists must assess whether the tree species contains sufficient genetic variation in resistance. This involves locating candidate resistant trees; developing and applying short-term assay(s) to screen hundreds or thousands of candidate trees; and determining the levels of resistance present. Second, scientists must develop resistant planting stock for use in restoration. This stage includes scaling up the screening protocol; selecting the resistant candidates or progeny to be used; breeding to increase resistance; establishing seed orchards or other methods to deliver large numbers of resistant stock for planting; and additional field trials to further validate and delineate resistance. Sniezko and Koch (2017) and Sniezko and Nelson (2022) discuss the challenges and describe successes.
Complicating the restoration phase is the fact that the resistant tree must be able to thrive and compete in an ecosystem that has changed greatly from that in which it formerly resided. Causes of these changes include repercussions from the absence of the tree species – and possibly associated species; the possible presence of other biotic stresses (pests); and climate change. This is discussed by Nelson (2022). See also my blog.
Successfully completing these steps requires a long-term commitment, which includes significant funding and strong supportive infrastructure. Schlarbaum pointed out that the public and politicians don’t understand the complexity of the restoration challenge and the resources required. He documented the shrinking tree improvement infrastructure as of 2014. At that time, funding for all USFS regional breeding programs was just $6 million. State and land grant university breeding programs were fragmented and seriously underfunded. Only 28 states still had some type of tree improvement activity – and some of these programs were only seed orchards, not active breeding and testing programs. Members of university-industrial cooperatives focus on a small number of commercial species – which are not the species threatened by non-native pests. I believe these resources have shrunk even farther in the decade since 2014.
A separate source of funds for resistance breeding is the Forest Health Protection program, which is under the Deputy Chief for State, Private, and Tribal Forestry rather than the Deputy Chief for Research and Development. While nation-wide data on seed or scion collection or screening to identify and evaluate genetic resistance are poorly reported, Coleman et al. indicate that the USFS Dorena Genetic Resource Center screens unspecified “hundreds” of seed lots for resistance to pathogens annually. The Center also participates in seed, cone, and scion collections, especially of white pines vulnerable to white pine blister rust (WPBR). Supplemental Table S3 lists projects funded over the two decades analyzed by Coleman et al. (2011 – 2020). These included efforts to identify and evaluate possible genetic bases for resistance to, e.g., hemlock woolly adelgid, balsam woolly adelgid, laurel wilt, emerald ash borer, butternut canker, rapid ʻōhiʻa death; and gene conservation for eastern hemlock, ashes, chestnut, in addition to the five-needle pines. Currently, FHP allocates $1.2 million annually to support the group of activities called Genetic Conservation, Resistance and Restoration (R. Cooksey, pers. comm.).
USFS scientists involved in these projects describe challenges arising from efforts to cobble together funding from these many sources to support coherent programs. Overall funding levels still fall short of the need, and failure to obtain funding for one component of a program stymies the entire endeavor.
However, some developments are encouraging. The number of private foundations devoted to tree breeding has increased in the last decade. The American Chestnut Foundation (TACF) and American Chestnut Cooperators Foundation (ACCF) have been joined by the White Pine Ecosystem Foundation, the Great Lakes Basin Forest Health Collaborative, Forest Restoration Alliance, ‘Ohi‘a Disease Resistance Program … These organizations raise awareness, coordinate efforts by multiple parties, and provide opportunities for individuals to contribute funds and volunteer work.
In Hawai`i, disease resistance programs with both koa (Dudley et al.) and ʻōhiʻa ((Metrosideros polymorpha) (Luiz et al.) are active. Work with ash species to find and develop resistance to emerald ash borer is under way but limited due to lack of funds.
Finally, we can persuade Congress to incorporate the provisions of two bills, H.R. 3174 and S. 1238, into the next Farm Bill. The bills would, inter alia, create two grant program. One would fund research addressing specific questions impeding the recovery of native tree species that have suffered severe levels of mortality caused by non-native plant pests. The second would fund implementation of projects to restore these pest-decimated tree species to the forest.
Funded projects would be required to be part of a forest restoration strategy that incorporates a majority of the following components:
(1) Collection and conservation of native tree genetic material;
(2) Production of propagules of the target tree species in numbers sufficient for landscape-scale restoration;
(3) Preparation of planting sites in the target tree species’ former habitats;
Facilities needed to support successful breeding programs
Sniezko and Nelson identified these needs as follows:
(a) growing space (e.g., greenhouses);
(b) seed handling and cold storage capacity;
(c) inoculation infrastructure;
(d) field sites for testing;
(e) database capability for collecting, maintaining, and analyzing data;
(f) areas for seed orchard development;
(g) skilled personnel (tree breeders, data managers, technicians, administrative support personnel, and access to expertise in pathology and entomology).
There are very few facilities dedicated primarily to development of populations of trees with resistance to non-native pests; the most notable is the Dorena Genetic Resource Center. Even the existing programs require significant funding increases to accelerate current programs or expand to address additional species. Sniezko and Nelson stress further that a resistance breeding program has different objectives, magnitude and focus than most research projects. It is applied science, that is, an action-oriented effort that is solution-minded—countering the impact of a major disturbance caused by a pest (in our case, a non-native pest).
Schlarbaum provides a shorter but similar list of facilities needed:
production of propagules (seed or clones);
mass propagation in growing facilities, e.g., bare-root seedling nursery or greenhouses;
site preparation of former habitat and planting; and
post-planting maintenance.
Schlarbaum emphasized that each of these activities requires different skill sets, equipment, facilities, and infrastructure.
Genetic Engineering as a Specific Tool
There is considerable interest in the potential role of genetic engineering in pest resistance breeding. None of the successful programs world-wide has yet used genetic engineering (Sniezko and Koch 2017). While incorporating it into holistic breeding programs might result in greater efficiency for certain processes, it raises legal and social acceptability issues. Jacobs et al. discuss the type of education and outreach program needed to generate widespread public support this approach to tree species “rescues.” They call for USDA Forest Service to lead this education effort.
The focus of the 2021 workshop hosted by Purdue University was to explore the pros and cons of using biotechnology in restoring pest-threatened forest tree species. The special issue of New Forests contains several participants’ analyses.
The overall conclusions are that:
“Genetic engineering” – defined as “any technique that uses recombinant, synthesized, or amplified nucleic acids to modify a genome” – is only one type of biotechnology applicable to tree breeding. Other biotechnologies include tissue culture-based propagation, molecular-based genetic markers, gene cloning and sequencing, and genome mapping and sequencing.
These new technologies can increase the efficiency of more traditional breeding techniques, However, biotechnologies cannot substitute for holistic programs that incorporate all helpful methods. Careful consideration goes into selecting which techniques are appropriate for a particular host-pest system.
Each tree species has unique needs regarding seed or scion collection; seedling propagation in nurseries; site preparation and planting techniques; and management of regeneration after its re-introduction into forests. Scientists don’t yet understand these various needs of many threatened species.
In the eastern U.S., the tree-breeding infrastructure is based in the Southeast and focused on a few pine species grown commercially. The facilities do not match the greatest need. That is, many of the at-risk species are hardwoods native to the Northeast.
Current resources are inadequate to support the sustained, long-term commitment of resources and facilities necessary to be successful.
Dana Nelson addressed the role of genetic engineering (GE) in detail. He emphasized repeatedly that GE is not a short-cut to tree improvement. Incorporating a GE component does not avoid the other steps. It can, though, provide new possibilities to address problems. Nelson says the crucial, initial question is – can GE solve the specific forest conservation or management problem more effectively and efficiently than existing methods? There are some important subtleties to consider. First, success does not require achieving immunity (100% resistance); the level of resistance needs to be only sufficient to allow the tree species to survive, reproduce and co-evolve with the pest. Second, “efficiency” is an important consideration. We cannot afford delay because during those years or decades the wild tree loses genetic variability as more trees die. Also, changes in the environment continues to change, and the decimated tree species is not adapting.
If genetic engineering promises to contribute meaningfully, then the breeders must answer several follow-up questions before proceeding to develop a specific plan. Nelson also stresses that the planned activities must be integrated with an ongoing tree breeding program to ensure project success.
Nelson provides a lengthy description of the process of integrating genetic engineering into tree breeding programs.
GE in Chestnut Breeding – Setback
The most prominent breeding effort incorporating genetic engineering in the U.S. has been The American Chestnut Foundation’s (TACF) program to restore American chestnut (Castanea dentata). For decades, TACF has pursued development of trees resistant to the fungus which causes chestnut blight (Cryphonectria parasitica). Over the past decade, hopes have centered on a genetically engineered line into which was inserted a gene from wheat (oxalate oxidase; OxO). The OxO gene detoxifies the oxalic acid produced by the chestnut blight fungus and thus prevents the cankers from killing the tree.
Years of tests have shown the gene to be effective and to cause no environmental harm. In 2023, when trees in outside test plots grew larger, scientists observed disappointing results. Trees’ blight tolerance varied greatly. Worse, resistant trees grew more slowly and exhibited lower overall fitness. [For a full discussion of the issues, visit TACF’s website] Prompted by these disappointments, scientists carried out further molecular analyses. They found that the OxO gene was on a different chromosome than expected.
TACF researchers now suspect that the trees’ variable performance stems primarily from the placement of the OxO gene and the fact that the gene is always “switched on”. That constant expression appears to result in high metabolic costs for the trees. Since all the genetic lines developed to date have this defect, TACF is no longer pursuing research efforts with any of the GE trees developed to date. The Foundation believes it would be irresponsible to continue efforts – by itself and by partners – focused on a genetic line that looks unable to compete successfully when introduced to the forest.
Instead, TACF has begun investigating other transgenic lines that use a “wound inducible” promoter that switches on the OxO gene only in cells where the plant is wounded. Researchers at both the State University of New York College of Environmental Science and Forestry (SUNY-ESF) and the University of Georgia are working with a variety of inducible promoters. TACF is also testing whether inducible OxO expression can be “stacked”onto genes for blight resistance present in the backcross hybrids. Finally, TACF and Virginia Tech are also exploring whether resistance can be enhanced by insertion of genes from Chinese chestnut directly into American chestnut using methods similar to OxO insertion.
It will be years before we know if these approaches provide sufficient levels of resistance. TACF will undertake more extensive testing for efficacy through the tree’s full life cycle – in the lab, greenhouse, and field – before submitting a new GE organism to regulators for review. Meanwhile, it will continue rigorous testing for plant health and environmental risks and will strengthen the cooperative structure to facilitate sharing of intellectual property and provide full transparency.
The Darling GE line was the most important transgenic hybrid chestnut line TACF had invested in. So this is a major setback – and comes when regulatory approval seemed near.
Let’s keep this in perspective, however. As a colleague has said, based on his years of teaching science to middle school students, “There are no failures in science, just reductions in the unknown; Edison failed a thousand times before getting the light bulb right, etc….” The technology is ready when it is ready. In addition, he praised TACF for choosing to explain its decision frankly: “nothing builds credibility like early failures openly admitted.”
Meanwhile, TACF continues to make gains in blight resistance with its traditional American chestnut backcross hybrid breeding program. They have established a genetically diverse, reproducing population of thousands of trees representing hundreds of breeding lines. These trees are planted in TACF’s expansive network of germplasm conservation orchards and regional breeding and backcross orchards. They have substantially increased resistance to both the blight and Phytophthora cinnanomi in these populations. The future inclusion of transgenic and/or gene-edited trees will further increase those gains.
Another Approach
Meantime, the American Chestnut Cooperators Foundation (ACCF), which breeds from persistent pure American chestnut, now has some trees that are nearly 50 years old. The program has bred five generations of pure American chestnuts that show durable blight resistance. Many trees are 60 feet tall or higher; they produce nuts. Vice President Jenny Abla (pers. comm.) reports that they show excellent canker response (swollen and superficial). The picture shows one of their most notable stands, which is in the Jefferson National Forest. Dr. Sniezko is exploring whether this program shows sufficient promise to justify increased support from the USFS.
Improving Coordination – will funds follow?
In July 2023, representatives from essentially all the forest tree resistance breeding programs in the U.S. met at Dorena Genetic Resource Center in Oregon to discuss their current successes and how to fast-track all programs. This is the first such meeting since 1982 (Richard Sniezko, pers. comm.). I encourage us all to study the report when it emerges and encourage USFS leadership to support the more unified enterprise.
Status of Efforts to Conserve Other Tree Species
The special issue of New Forests (Vol. 54 Issue 4) included several articles exploring the specifics of breeding elms, ashes, and ʻōhiʻa. These describe difficult challenges … and scientists determined to make progress on overcoming them.
Elms (Ulmus spp.) (see article by Martin et al.)
Let’s not forget that elms were keystone species in Europe and North America until attacked by two epidemics of “Dutch” elm disease during the 20th Century. While hybrid elms are available for urban plantings, many consider them not appropriate for planting in natural forests because these genotypes are not native.
Martin et al. describe a bewildering conglomeration of complexities and possibilities arising from biotic and abiotic factors. Initiation and especially intensity of the disease in a particular tree depend on
the species or strain of the tree, vectoring beetle, and pathogen;
timing of the attack; and
adequacy of water supplies at that time.
Possible targets for manipulation include the pathogen, its beetle vector, and the tree’s response — either in its bark or xylem. Martin et al. suggest that a combination of resistance to the pathogen within the xylem, resistance to beetles’ feeding wounds, and lowering tree clues that attract the beetles could considerably enhance longer-term overall resistance in the field.
However, verifying which approaches produce the best result will be complicated by the trees’ sensitivity to environmental factors such as season and water supply. Apparent resistance might actually be tied to, for example, low water supplies during the spring when the attack occurred.
Restoration strategies, including resistance to pests, must accommodate the diverse ecological conditions in the species’ large range, the rapid evolution of the Ophiostoma pathogens; and other pests and pathogens that attack elms. Nor do scientists know appropriate planting strategies.
Martin et al. believe Dutch elm disease is unlikely to be spread by movement of living elm plants, although other pests could be (and have been).
Ashes (Fraxinus spp.)
While a USFS team led by Jennifer Koch link are conducting much of the on-the-ground efforts to breed ash trees resistant to the emerald ash borer (EAB; Agrilus plannipennis), Stanley et al. note that scientists cannot simply cross most North American ash species with the Asian ash, F. mandshurica, because the two groups are sexually incompatible. Scientists have instead focused on trying to enhance the resistance to EAB that is apparently present in a small proportion of ash trees, called “lingering ash.” Scientists funded by USDA Forest Service have already devoted over 14 years to finding such lingering ash to be tested for resistance.
Testing these trees is not simple (see Stanley et al.). But scientists are overcoming some of the obstacles. They have shown that the capability of a few green ash (Fraxinus pennsylvanica) (less than 1%) to defend themselves from EAB attack is genetic. Genes determine the relative abundance of specific metabolites manufactured by the tree; high levels kill more beetle larvae. These trees’ tolerance is not immunity but it might be sufficient to allow the tree to survive and grow. The level of metabolites synthesized by succeeding generations of the tree can probably also be enhanced by breeding.
To restore ash it is necessary to propagate large numbers of clones and to root the resulting embryos. This has been challenging. Merkle et al. describe five years of efforts to develop techniques that allow in vitro propagation to speed up selection and breeding. These techniques will facilitate establishment of numerous groups of propagules with the genetic differences needed to accommodate the large geographic range of several ash trees. For example, the green ash range covers more than half the continental U.S. plus multiple Canadian provinces.
‘Ōhi‘a (Metrosideros polymorpha)
‘Ohi‘a is the most widespread tree species on the Hawaiian Islands. It provides vitally important habitat for conservation of countless taxa of endemic birds, insects, and plants. It is also of great cultural importance for Native Hawaiians.
Luiz et al. review the tree species’ importance, the many threats to native Hawaiian forests, and a coalition’s efforts to counter the most recent – and alarming – threat, rapid ʻōhiʻa death (ROD).
Rapid ʻōhiʻa death is caused by two introduced species of in the genus Ceratocystis. C. lukuohia colonizes the tree’s sapwood and kills the tree quickly. This disease is present on two islands, Hawai`i and Kaua‘i. It has the potential to devastate ‘ohi‘a forests across the state. The other pathogen, C. huliohia, invades the phloem, cambium, and outer xylem, resulting in a well-defined area of necrotic tissue and slower mortality. This disease is on Hawai`i and Kaua‘i, plus Maui and O‘ahu. The two pathogens have different origins. C. lukuohia belongs to a genetic line that is based in Latin America, C. huliohia to a genetic line based in Asia and Australia.
Conservationists formed a coalition and developed a strategy to guide the process of identifying and developing disease resistance in M. polymorpha and, if possible, other Metrosideros species on the Islands. Luiz et al. describe the coalition’s many activities. The challenges are familiar ones:
obtaining sufficient facilities to screen large numbers of seedlings;
developing techniques for inoculation, propagation, and speeding up growth of seedlings;
improving techniques for detecting individual infected and healthy trees across difficult terrain;
testing trees native to all parts of the tree’s range, which is not large in area, but covers a great variety of elevations and climates); and
needing to develop trees resistant to both C. lukuohia and C. huliohia.
Luiz et al. reiterate the necessity to manage all threats to healthy ʻōhiʻa stands, for example, by
curtailing human spead of infected wood, using both quarantines and supportive public education;
testing repellants to reduce beetle attack.
reducing injuries to trees by fencing forests and removing feral ungulates. link to website?
SOURCES
Buggs, R.J.A. 2020. Changing perceptions of tree resistance research. Plants, People, Planet. 2020;2:2–4. https://doi.org/10.1002/ppp3.10089
Coleman, T.W., A.D. Graves, B.W. Oblinger, R.W. Flowers, J.J. Jacobs, B.D. Moltzan, S.S. Stephens, R.J. Rabaglia. 2023. Evaluating a decade (2011–2020) of integrated forest pest management in the United States. Journal of Integrated Pest Management. (2023) 14(1): 23; 1–17
Dudley, N.; Jones, T.; Gerber, K.; Ross-Davis, A.L.; Sniezko, R.A.; Cannon, P.; Dobbs, J. 2020. Establishment of a Genetically Diverse, Disease-Resistant Acacia koa A. Gray Seed Orchard in Kokee, Kauai: Early Growth, Form, and Survival. Forests 2020, 11, 1276 https://doi.org/10.3390/f11121276
Jacobs, D.F., R. Kasten Dumroese, A.N. Brennan, F.T. Campbell, A.O. Conrad, J.A. Delborne, et al. 2023. Reintroduction of at-risk forest tree species using biotech depends on regulatory policy, informed
by science and with public support. New Forests (2023) 54:587–604
Luiz, B.C., C.P. Giardina, L.M. Keith, D.F. Jacobs, R.A. Sniezko, M.A. Hughes, J.B. Friday, P. Cannon, R. Hauff, K. Francisco, M.M. Chau, N. Dudley, A. Yeh, G. Asner, R.E. Martin, R. Perroy, B.J. Tucker, A. Evangelista, V. Fernandez, C. Martins-Keli.iho.omalu, K. Santos, R. Ohara. 2023. A framework for establishing a rapid ‘Ohi‘a death resistance program. New Forests https://doi.org/10.1007/s11056-021-09896-5
Martín, J.A., J. Domínguez, A. Solla, C.M. Brasier, J.F. Webber, A. Santini, C. Martínez-Arias, L. Bernier, L. Gil1. 2023. Complexities underlying the breeding and deployment of Dutch elm disease resistant elms. New Forests https://doi.org/10.1007/s11056-021-09865-y
Merkle, S.A., J.L. Koch, A.R. Tull, J.E. Dassow, D.W. Carey, B.F. Barnes, M.W.M. Richins, P.M. Montello, K.R. Eidle, L.T. House, D.A. Herms and K.J.K. Gandhi. 2023. Application of somatic embryogenesis for development of emerald ash borer-resistant white ash and green ash varietals. New Forests https://doi.org/10.1007/s11056-022-09903-2
Nelson, C.D. 2023. Tree breeding, a necessary complement to genetic engineering. New Forests
Pike, C.C., J. Koch, C.D. Nelson. 2021. Breeding for Resistance to Tree Pests: Successes, Challenges, and a Guide to the Future. Journal of Forestry, Volume 119, Issue 1, January 2021, Pages 96–105, https://doi.org/10.1093/jofore/fvaa049
Sniezko, R.A., J. Koch, J-J. Liu and J. Romero-Severson. 2023. Will Genomic Info Facilitate Forest Tree Breeding for Disease and Pest Resistance? Forests 2023, 14, 2382.
Sniezko, R.A. and C.D. Nelson. 2022. Chapter 10, Resistance breeding against tree pathogens. In Asiegbu and Kovalchuk, editors. Forest Microbiology Volume 2: Forest Tree Health; 1st Edition. Elsevier
Stanley, R.K., Carey, D.W., Mason, M.E., Doran, A., Wolf, J., Otoo, K.O., Poland, T.M., Koch, J.L., Jones, A.D. and Romero-Severson, J. 2023. Emerald ash borer (Agrilus planipennis) infestation bioassays and metabolic profiles of green ash (Fraxinus pennsylvanica) provide evidence for an induced host defensive response to larval infestation. Front. For. Glob. Change 6:1166421. doi: 10.3389/ffgc.2023.1166421
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm