USFS Forest Health Protection program: what it funds

affects of mountan pine beetle on lodgepole pine in Rocky Mountain National Park, Colorado photo from Wikimedia; one of pests addressed by USFS FHP

Several USFS scientists have published an assessment of the agency’s program to enhance forest health across the country: the Forest Health (FHP) program. [see Coleman et al., full citation at end of this blog.] The program assists cooperators (including other federal agencies) to prevent, suppress, and eradicate insect and pathogen outbreaks affecting trees, regardless of land ownership.

Each year, I advocate for adequate funding for the FHP program — which comes from annual Congressional appropriations. Funding has remained static at about $100 million per year. I interpret the article as providing support for my call for increased appropriations. First, it reports that the number of projects and extent of area treated have declined from 2011 to 2020. This is because static funding levels are stretched increasingly thin as costs to implement the same activities rise. Second, the program does not address many damaging forest pests already in the country. The result is growth of established threats to forest health. Finally, new insects and pathogens continue to be introduced. Protecting forest health necessitates tackling these new pests – and that requires money and staff.   

Coleman et al. analyzed data from the decade 2011- 2020 to determine the most frequently used project types, integrated pest management (IPM) strategies and tactics, dominant forest pests and associated hosts managed, and most comprehensive forest IPM programs in practice. While there is a wide range of possible projects, most of those funded consist of some form of treatment (more below). The databases relied on do not include funding through the National Forest System aimed at improving forest health through such  management activities as stand thinning treatments and prescribed fire. Nor are all pest management activities recorded in the centralized databases. I regret especially the fact that “genetic control” (= resistance breeding) are left out.

Port-Orford cedar seedlings in trial for resistance to Phytophthora lateralis at Dorena center; photo courtesy of Richard Sniezko, USFS

Summary of Findings

The data are sorted in various categories, depending on whether one wishes to focus on the type of organism being managed or the management approach. All presentations make evident a dramatic imbalance in the projects funded. Again and again, spongy moth (Lymantria dispar dispar), southern pine beetle (SPB, Dendroctonus frontalis), and several bark beetles attacking conifers in the West (in particular mountain pine beetle, [MPB] Dendroctonus ponderosae) dominate, as measured by both funding and area treated.

oak trees in Shenandoah National Park killed by spongy moth; photo by F.T. Campbell
  • The bulk of the funding went to the above species, plus hemlock woolly adelgid (HWA; Adelges tsugae); emerald ash borer (EAB, Agrilus planipennis), oak wilt (caused by Bretziella fagacearum), and white pine blister rust (WPBR, Cronartium ribicola).
  • 95% of the projects focused on only four taxa: oaks, Quercus spp. [spongy moth suppression and eradication]; loblolly and ponderosa pines [bark beetle prevention and suppression]; and eastern hemlock [HWA suppression].
  • Projects seeking to suppress an existing pest outbreak covered 87% of the total treatment area. However, 98% of the treated area was linked to only 20 taxa; again, spongy moth dominated.
  • Projects seeking to prevent introduction or spread of a pest constituted only 30% of all projects and covered only 11% of the total treatment area.
  • Eradication and restoration projects each equaled less than 5% of total projects and treatment areas.
  • Native forest pests were targetted by 79% of projects; non-native pests by 21%. However, non-native pests accounted for 84% of the total treatment area (again, the spongy moth).
  • While 67% of projects took place on USFS lands (focused on MPB and SPB), 89% of the total treatment area was on lands managed by others (state or other federal agencies, or private landowners). Again, the size of the non-USFS  area treated was driven primarily by the spongy moth Slow the Spread program.
  • Insect pests received nearly all of the funding: 70% of funding targetted phloem-feeding insects, especially SPB and MPB; 10% targetted foliage feeders, especially spongy moth; 6% targetted sap feeders. 4% tackled rusts (e.g., WPBR); just 2% addressed wood borers (e.g., Asian longhorned beetle, emerald ash borer).
  • The ranking by size of area treated differs. In this case, 82% of areas treated face damage by foliage feeders (e.g., spongy moth); 15% of the treated areas are threatened by phloem feeders (e.g., MPB); only 1.4% of the area is damaged by sap feeders (e.g., HWA); 0.6% is threatened by rust; and 0.2% by wood borers.
  • Re: control strategies, 32% of projects relied on silvicultural strategies; 22% used semiochemical strategies; 21% exploited other chemical controls; and 18% used physical/mechanical control methods.

Coleman et al. regretted that few programs incorporated microbial/biopesticide control strategies; these were applied on only 10% of total treated area. Again, the vast majority of such projects were aerial applications of spongy moth controls, Bacillus thuringiensis var. kurstaki (Btk) and nucleopolyhedrosis viruses (NPV) (Gypchek). Coleman et al. called for more research to support this approach efforts to overcome other obstacles (see below).

Coleman et al. also called for better record-keeping to enable analysis of genetic control/ resistance breeding projects, treatment efficacy, and survey and technical assistance activities.

History

The article provides a brief summary of the history of the Forest Service’ pest management efforts. Before the 1960s, the USFS relied on labor-intensive physical control tactics, classical biocontrol, and widespread chemical applications. Examples include application of pesticides to suppress or eradicate spongy moth; decades of Ribes removal to curtail spread of white pine blister rust; salvage logging and chemical controls to counter phloem feeders / bark beetles in the South and West. These strategies were increasingly replaced by pest-specific management tactics during the 1970s.

Over the decade studied (2011-2020), tree defoliation attributed to various pests (including pathogens) affected an estimated 0.7% of the 333 million ha of U.S. forest land annually. Mortality attributed to pests impacted an estimated 0.8% of that forest annually. See Table 1. Two-thirds of the area affected by tree mortality is attributed to phloem feeders; a distant second agent is wood borers. These data are incomplete because many insects, diseases, and parasitic higher plants are not tracked by aerial surveys.

As I noted above, these data do not include projects that screen tree species to identify and evaluate genetic resistance to a pest; or efforts to collect cones, seed, and scion. I consider these gene conservation and resistance programs to be some of the most important pest-response efforts. I have blogged about the USFS’ Dorena Genetic Resource Center’ efforts to breed five-needle pines, Port-Orford cedar, and ash. link

41% of silvicultural control treatments targetted phloem feeders; 48% addressed cankers and rusts together. Restoration planting was done in response to invasions by ALB, EAB, and WPBR, as well as native bark beetles and mistletoes.

effort to eradicate SOD in southern Oregon; partially funded by USFS FHP. Photo courtesy of Oregon Department of Forestry

Physical/mechanical control projects were most widely applied in the Rocky Mountains in response particularly to diseases: vascular wilts, rusts, and cankers, including WPBR. This type of project was also used to deal with non-native diseases in other parts of the country, e.g., oak wilt, sudden oak death (SOD), Port-Orford cedar root rot, and rapid ʻōhiʻa death. Sanitation treatments (i.e., removal of infected/infested trees) was used for native mistletoes and root rots, and some non-native insects, e.g., EAB and coconut rhinoceros beetle (Oryctes rhinoceros). Pruning is a control strategy for WPBR. Trenching is applied solely to suppress oak wilt.

Chemical controls were limited to small areas. These projects targetted seed/cone/flower fruit feeders, foliage and shoot diseases, sap feeders [e.g., balsam woolly adelgid (BWA), HWA], wood borers (e.g., EAB) and phloem feeders (e.g., Dutch elm disease; DMF oak wilt vectors). Cover sprays have been used against goldspotted oak borer (GSOB); and many native insects. Fungicides are rarely used; some is applied against the oak wilt pathogen in areas inaccessible by heavy equipment.

treating hemlock trees in Conestee Falls, NC; photo courtesy of North Carolina Hemlock Restoration Initiative

Classical biocontrol projects funded by the program targetted almost exclusively HWA. Some 4.3 million predators have been released since the early 1990s; 820,057 in just the past 10 years.

Gene conservation and breeding projects were directed primary at commercially important hosts, e.g., loblolly Pinus taeda and slash pine P. elliottii; and several non-native pests, including chestnut blight, EAB, HWA, and WPBR.

Survey and technical assistance (i.e., indirectly funded activities) conducted by federal, state, and tribal personnel contributed to education/outreach, evaluating effectiveness, identification, monitoring, and record keeping strategies.

As should be evident from the data presented here, suppression treatments dominated by number of projects and treatment area. The poster child project is the national spongy moth Slow the Spread program. The authors say this program is the most advanced forest IPM program in the world. It has successfully slowed spongy moth’s rate of spread by more than 80% for more than 20 years.

A second widely-used subset of suppression programs consists of physical / mechanical control. This is often the principal suppression strategy in high-visitation sites (e.g., administration sites, campgrounds, picnic areas, and recreation areas). Sanitation harvests are one of the few viable management techniques for suppressing or slowing the spread of recently introduced non-native pests. Nevertheless, the largest number of suppression projects and use of sanitation treatments focused on a native pest, mountain pine beetle, at the height of its outbreak in early 2010s.

Silvicultural control, specifically tree thinning, represents the predominant forest pest prevention tactic, especially on lands managed by the USFS. Two programs dominate: the Southern Pine Beetle Prevention Program and the Western Bark Beetle Initiative. Again, Coleman et al. assess these treatments as very successful. Forest thinning treatments also address other management concerns, i.e., reduce threat of catastrophic wildfires and reduce adverse effects of climate change.

Chemical control tactics are applied to suppress most forest insect feeding guilds in high-value sites and seed orchards. Soil or tree injections of systemic pesticides are used to protect ash and hemlock trees. Topical sprays have been applied to protect whitebark pine (Pinus albicaulis) from mountain pine beetle. Whitebark pine was listed as threatened under the Endangered Species Act in December 2022.

dead whitebark pine at Crater Lake NP; photo by F.T. Campbell

Soil or tree injections target two non-native insects, EAB and HWA.

Genetic control via resistance breeding represents the primary strategy to combat several non-native diseases. (More options are typically available for insects than diseases.) Coleman et al. focus on the extensive effort to protect many of the five-needle pines from WPBR. As I have described in earlier blogs, the Dorena Genetic Resource Center in Oregon has engaged on numerous other species, too.

Coleman et al. describe pest-management associated monitoring efforts as consisting largely of coordinated annual aerial detection surveys, detection trapping, stream-baiting of Phytophthora ramorum, and ground surveys to address site-specific issues.

Coleman et al. call for improvement of record-keeping / databases to encompass all pests, management actions, and ownerships. They also advocate for additional decision-making tools, development of microbial/biopesticides, genetic research and breeding, and biocontrol strategies for several pest groups.

They consider the southern pine beetle and spongy moth programs to be models of comprehensive IPM programs that could be adapted to additional forest health threats. They note, however, that development and implementation of these programs require significant time, financial commitments, and collaborations from various supporting agencies. Not all programs enjoy such resources.

SOURCE

Coleman, T.W, A.D. Graves, B.W. Oblinger, R.W. Flowers, J.J. Jacobs, B.D. Moltzan, S.S. Stephens, R.J. Rabaglia. 2023. Evaluating a decade (2011–2020) of integrated forest pest management in the United States

Journal of Integrated Pest Management, (2023) 14(1): 23; 1–17

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Hot off the presses: How beech leaf disease kills trees

beech leaf disease symptoms; photo courtesy of Jennifer Koch, USFS

As we know, beech leaf disease (BLD) has spread rapidly in the decade since its discovery in northeast Ohio. It has been detected as far east as the Maine coast, as far south as northern Virginia, as far north as southern Ontario, and as far west as eastern Michigan and northern Indiana. It has been found in 12 states.

BLD is associated with a nematode, Litylenchus crenatae subsp. mccannii (Lcm), although whether this is the sole causal agent is not yet clear.

BLD’s North American host, American beech (Fagus grandifolia),is an important native deciduous hardwood species. It plays important roles in nutrient cycling, erosion control, and carbon storage and sequestration in forests. Wildlife species depend on the trees’ canopies and especially cavities blog for nesting sites, shelter, and nutritious nuts. American beech – with sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) – dominate the northern hardwood ecosystem of northeastern United States and southeastern Canada. These forests occupy a huge area; in just New England and New York they occupy 20 million acres (Leak, Yamasaki and Holleran. 2014; full citation at end of blog).

Beech leaf disease also affects European beech, (F. sylvatica), Chinese beech (F. engleriana), and Oriental beech (F. orientalis) planted in North America. The disease has not yet been detected in Asia or Europe. Japanese beech (F. crenata) sporadically display symptomatic leaves, but the disease has not been reported there.

Scientists working to understand the disease, how it spreads, and its ecological impact confer every other month. The next time is in early December.

Paulo Vieira, of the USDA Agriculture Research Service, leads one group seeking to better understand how the disease infects its host. They published a new study (see full citation at end of blog) examining how the nematode provokes changes in the cells of the trees’ leaves. As they point out, leaves are plants’ primary organs for photosynthesis – hence providing energy for growth. The leaf is composed of a several cell types organized into different tissues with specific function related to photosynthesis, gas exchange, and/or the transportation of water and nutrients. Thus, changes in leaf morphology affect the normal functioning of the leaf and therefore the tree’s growth and survival.

Vieira et al. found that:

  • The BLD nematode enters the leaf bud as it forms in late summer. In early autumn, all nematode developmental stages were found in the buds, including eggs at various stages of embryonic development, juveniles, and adults. Adult males were found in fewer than 20% of the buds, suggesting that the nematode can reproduce asexually.
  • Feeding by the BLD nematode induces abnormal and extensive cell proliferation, resulting in a significant increase of the number of cell layers inside the leaf. These changes improve the nutrition that the leaves provide to the nematode. However, the BLD-induced distortions of the bud persist as the leaf grows. Symptomatic leaf “banding” results. These areas have a proliferation of abnormally large and irregularly shaped cells with more chloroplasts. Intercellular spaces are also larger; this is where the nematodes are found. in. (The publication has dramatic photographs.)
  • Sites damaged by nematodes are a major resource for metabolites needed for plant performance. So their damage imposes a considerable drain.
  • Colonization of roots by ectomycorrhizal fungal is also reduced in severely diseased trees.
  • Immature female nematodes are the principal winter survivors. However, many die, making it difficult to culture nematodes in the spring. The nematodes reproduce during the growing season. Buildup of nematode numbers makes culturing easier, so facilitating confirmation of the disease’s presence.
  • Nematodes can migrate along the stem to other leaves, thus spreading the infection.

Vieira et al. tell us fascinating facts about the nematode. The BLD nematode, Litylenchus crenatae subsp. mccannii (Lcm) is now considered one of the top ten most important plant-parasitic nematodes in the United States. To date, species of this genus have been found only in Japan and New Zealand. The species L. crenatae was first described from Japan. A second species — L. coprosma – was detected in 2012 in New Zealand in association with small chlorotic patches on leaves of two native plants in the Coprosma genus.

Litylenchus belongs to the family Anguinidae. Several species in the family are designated quarantine pests because they cause economically significant damage to food and ornamental corps, including grains (wheat, barley, rice) and potatoes. Anguinidae nematodes often parasitize aerial parts of the hosts (e.g., leaves, stems, inflorescences, seeds); less frequently they infest roots. They can migrate along the host tissue surfaces in water films. Their host ranges vary from broad to narrow. Other Anguinidae nematodes apparently share the ability to manipulate the host’s cellular machinery, which often results in the induction of cell hyperplasia [the enlargement of an organ or tissue caused by an increase in the reproduction rate of its cells], and hypertrophy [increase and growth of cells] of the tissues on which they feed.

healthy beech leaves; F.T. Campbell

Vieira et al. assert that the rapid spread of Litylenchus crenatae subsp. mccannii – combined with the apparent lack of resistance in native beech trees – suggests that this nematode was recently introduced to North America. Furthermore, the ability of this subspecies to change the host’s cell cycle machinery supports the link between the presence of the nematode and the disease.

The mechanisms by which nematodes change host-plant cells are unknown.  I hope that scientists will pursue these questions. Perhaps the nematode family’s threat to grains and other food crops will prompt funding for such work. Unfortunately, I don’t think the threat to an ecologically-important native tree species will have the same power.

SOURCES

Leak, W.B, M. Yamasaki and R. Holleran. 2014 Silvicultural Guide for Northern Hardwoods in the Northeast. United States Department of Ariculture Forest Service Northern Research Station. General Technical Report NRS-132. April 2014.

Vieira P, M.R. Kantor MR, A. Jansen, Z.A. Handoo, J.D. Eisenback. (2023) Cellular insights of beech leaf disease reveal abnormal ectopic cell division of symptomatic interveinal leaf areas. PLoS ONE October 5, 2023. 18(10)  https://doi.org/10.1371/pone.0292588   

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

FY24 Appropriations for Key Programs: current status

Asian longhorned beetle in South Carolina; photo by R. Brad Thompson, USDA APHIS

In March I asked your help in asking Congress to fund USDA programs that protect forests from non-native insects and pathogens. The Congress has now taken major steps to specify funding for Fiscal Year 2024 – which begins on 1 October. Both the House and Senate Appropriations committees have adopted their bills. They differ substantially. When Congress returns from its August recess in September, it will face many difficulties in negotiating the final spending levels – not just the different funding levels but also attached “riders” dealing with social and political issues, most of which have nothing to do with invasive species. [Some of the riders to seek to restrict application of the Endangered Species Act to several species, e.g., sage grouse and grey wolf.]

USDA APHIS

As you know, USDA’s Animal and Plant Health Inspection Service (APHIS) is responsible for preventing introduction of pests that harm agriculture, including forests; and for immediate efforts to eradicate or contain those pests that do enter. While most port inspections are carried out by the Department of Homeland Security Bureau of Customs and Border Protection, APHIS sets the policy guidance. APHIS also inspects imports of living plants. In the table below, I provide information on funding for key APHIS programs in FY23, the Administration’s request for FY24, the funding level the Center for Invasive Species thought necessary, and the House and Senate funding levels.

The earlier blog link has additional information: the FY22 funding levels and a fairly long justification for funding these APHIS programs. I never posted a blog discussing USFS funding due to my trip to Europe.

Appropriations for APHIS programs (in $ millions)

ProgramFY 2023FY 2024 Pres.’ requestCISP askHouse billSenate bill
Tree & Wood Pest$63$64$65$55.6$62.6
Specialty Crops$216$222$222$224.5$217.9
Pest Detection$29$30$30??
Methods Development$23$23$25?$21.8
Emerg. Preparedness$44$45.2NA$44.6$48
Contingency fund$514$543 $514$514

I have not seen a report from the House Committee so I don’t know whether that body prioritized any invasive species issues.

The Senate report included this statement re: Sudden oak death

“The European strain 1 [EU1] and the North American strain 1 [NA1] of the sudden oak death pathogen are major threats to western Douglas-fir/tanoak forests, resulting in quarantine restrictions that threaten U.S. forests and export markets for log shipments and lily bulbs. The Committee recommendation includes no less than the fiscal year 2023 funding level to improve understanding of EU1 and NA1 strains of the sudden oak death pathogen and treatment methods to inform control and management techniques in wildlands.”

Appropriations for USFS programs (in $ millions)

ProgramFY 2023FY 2024 Pres.’ requestCISP askHouse billSenate bill
Forest Health Protection     
     Federal Lands  $32 $17
     Coop Lands  $51 $33
Research & Development $349.1$349.1$275$307.3
    Forest Inventory $30.2$30.2$32.2$32.2
Work on 10 invasive spp$.5$4.4$8.5* 0 0

* CISP ask was intended as first step to increasing funding for invasive species to 5% of R&D funds. See the March blog for an explanation.

SOD-killed tanoaks in southern Oregon; Oregon Department of Agriculture photo

Senate report = Sudden Oak Death. “Since 2001, USFS has been treating SOD infestations on public lands in Oregon and California, in cooperation with Bureau of Land Managemebt. The Committee expects USFS continue these efforts; it provides $3M for SOD treatments and partnerships with States and private landowners.”

Urban & Community Forestry.—”The bill provides $40 M for urban and community forestry. The Committee recognizes the critical need to restore and improve urban forests due to dominance of exotic invasive woody species. USFS should prioritize regional multi-organizational collaborations to support conservation efforts that help trees adapt to and offset climate change, which model best practices for effective urban and community forestry grants. The Committee also expects the program to prioritize tree-planting in socially disadvantaged and historically underserved communities with low canopy coverage, including Tribal communities.”

Summary of Justifications: The Costs of Introduced Pests

Introduced pests threaten many forest products and ecosystem services benefitting all Americans. Already, the 15 most damaging non-native pests threaten at least 41% of forest biomass in the “lower 48” states. In total, these 15 species have caused an additional annual conversion of live biomass to dead wood at a rate similar in magnitude to that attributed to fire (5.53 TgC per year for pests versus 5.4 to 14.2 TgC per year for fire). Fei et al.; full citation at end of blog.

These pests also impose significant costs that are borne principally by municipal governments and homeowners. As more pests have been accidentally introduced over time, these costs have risen.

Pathways of Introduction

The many tree-killing wood-boring pests arrive in inadequately treated crates, pallets, and other forms of packaging made of wood. The March blog presents 2023 data on import volumes and the findings of Haack et al. 2022. The point is, ISPM#15 has fallen short. [See blogs under “wood packaging” category on this site]

APHIS’ Tree and Wood Pests account supports eradication and control efforts targeting principally the Asian longhorned beetle and spongy (= gypsy) moth. Eradicating the ALB normally receives about two-thirds of the funds. The programs in Massachusetts, New York, Ohio, and South Carolina must continue until eradication succeeds. The emerald ash borer continues to spread since APHIS dropped regulations attempting to halt this. EAB was detected in Oregon in 2022; and on Colorado’s western slope in 2023.

Other pests—especially plant diseases like sudden oak death and sap sucking insects like hemlock woolly adelgid—come on imported plants. I noted that no studies have examined the risk of pests arriving on the ~5 billion plants we Americans now import annually (see March blog). The information gap is particularly alarming regarding pathogens. Evidence of failures:

APHIS manages damaging pests introduced on imported plants or other items through its Specialty Crops program. The principal example is its efforts to prevent spread of the SOD pathogen through the interstate trade in nursery plants. I am pleased that the Senate report calls on APHIS to focus on that pathogen’s growing genetic diversity.

Beech leaf disease has spread >700 miles since its first detection just 11 years ago

The Administration did not persuade the Congress to fund a $1 million emergency fund for APHIS – although they did fund both “emergency” and “contingency” programs.  I am not certain about the difference.

Furthermore, both chambers of Congress included in their legislation – not in the report – language instructing the Secretary of Agriculture to use his authority to obtain emergency funds from other USDA agencies to address animal or plant health emergencies:

Provided further, That in addition, in emergencies which threaten any segment of the agricultural production industry of the United States, the Secretary may transfer from other appropriations or funds available to the agencies or corporations of the Department such sums as may be deemed necessary, to be available only in such emergencies for the arrest and eradication of contagious or infectious disease or pests of animals, poultry, or plants, and for expenses in accordance with sections 10411 and 10417 of the Animal Health Protection Act (7 U.S.C. 8310 and 8316) and sections 431 and 442 of the Plant Protection 15 Act (7 U.S.C. 7751 and 7772), and any unexpended bal1ances of funds transferred for such emergency purposes in the preceding fiscal year shall be merged with such transferred amounts.”

The Congress has included this or similar language in appropriations reports for almost two decades, but it has not succeeded in freeing up many funds for countering plant pests. Perhaps placing the language in the legislation rather than the report will help … we will have to see.

In the meantime, I have been working with others to amend the Plant Protection Act to ensure that the emergencies so referenced include threats to forests. See §2 in H.R. 3174 link (Balint, Vermont) and S. 1238 (Welch, Vermont).

SOURCES CITED

Fei, S., R.S. Morin, C.M. Oswalt, and A.M. 2019. Biomass losses resulting from insect and disease invasions in United States forests. PNAS August 27, 2019. Vol. 116 No. 35  17371–17376

Haack R.A., J.A. Hardin, B.P. Caton and T.R. Petrice .2022. Wood borer detection rates on wood packaging materials entering the United States during different phases of ISPM#15 implementation and regulatory changes. Front. For. Glob. Change 5:1069117. doi: 10.3389/ffgc.2022.1069117

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Support House & Senate bills to Enhance Response to Forest Pests

white ash: a species that might be restored under the programs envisioned in the proposed bills

Bills have been introduced into both the House and Senate to enhance USDA APHIS and Forest Service programs intended to curtail introduction and spread of non-native forest pests and disease and – especially – programs aimed at restoring pest-decimated trees to the forest.

The House bill is H.R. 3174; it was introduced by Reps. Becca Balint (VT).

The Senate bill is S. 1238; it was introduced by Senators Peter Welch (VT), Mike Braun (IN), and Maggie Hassen (NH). [Both senators Welch and Braun are on the Agriculture Committee – which will write the bill.]

CISP hopes that the contents of these two bills will be incorporated in the Farm Bill that Congress is expected to adopt this year or next. The proposals have the support of the Forests in the Farm Bill coalition. [Unfortunately, neither the “Consolidated Recommendations” nor “Summarized Recommendations appears to be posted on the internet at present.]

In the last Congress, a nearly identical bill introduced by then-Representative Peter Welch was endorsed by the organizations listed below. We hope they will endorse the new bills now! If you are a member of one of these organizations, please ask them to do so.

Organizations that endorsed the previous bill: Vermont Woodlands Association, American Forest Foundation, Center for Invasive Species Prevention, Reduce Risk from Invasive Species Coalition, National Woodland Owners Association (NWOA), National Association of State Foresters (NASF), The Society of American Foresters (SAF), the North American Invasive Species Management Association (NAISMA), the Ecological Society of America, Entomological Society of America, a broad group of university professors and scientists, The Nature Conservancy (TNC) Vermont, Audubon Vermont, the Massachusetts Forest Alliance, the New Hampshire Timberland Owners Association, the Maine Woodland Owners Association, and the Pennsylvania Forestry Association.

I seek your help in generating support for incorporating these proposals into the 2023 Farm Bill. Please urge your representative and senators to co-sponsor the bills or otherwise support that action.

beech in a breeding experiment at The Holden Arboretum; photo by Jennifer Koch

Key points of the two bills:

  • They strengthen APHIS’ access to emergency funds. APHIS has had the authority to access emergency funds from the Commodity Credit Corporation since 2000. However, the Office of Management and Budget has often blocked its requests. See § 2, of the bills, EMERGENCY AUTHORITY WITH RESPECT TO INVASIVE SPECIES.
  • It creates two separate but related grant programs.
    • The first grant program – in § 3. FOREST RECLAMATION GRANTS – funds research addressing specific questions impeding the recovery of tree species that are native to the US and have suffered severe levels of mortality caused by non-native plant pests or noxious weeds.
    • The second grant program – in § 4. FOREST RESTORATION IMPLEMENTATION GRANTS – funds implementation of projects to restore these pest-decimated tree species to the forest. These projects must be part of a forest restoration strategy that incorporates a majority of the following components:

(1) Collection and conservation of native tree genetic material.

(2) Production of propagules of the target tree species in numbers sufficient for landscape-scale restoration.

(3) Preparation of planting sites in the target tree species’ former habitats.

(4) Planting of native tree seedlings.

(5) Post-planting maintenance of native trees.

  • § 5 states that the absence of a national policy on addressing nonnative forest pests has resulted in their receiving a low priority within all Federal agencies. It then mandates a study to analyze agencies’ available resources, raise the issue’s priority, and improve coordination among agencies. This study is to be carried out by an independent institution, for example the National Academy of Sciences. The authors are to consult with specialists in entomology, genetics, forest pathology, tree breeding, forest and urban ecology, and invasive species management.
  • Funding for all three action components – the emergency response and both grant programs – would come from the Commodity Credit Corporation, so it would not be subject to the vagaries of annual appropriations bills.
Forest Restoration Alliance volunteers potting hemlock seedlings; photo provided by Fred Hains

Entities which could apply for the research grants (§ 3 of the bills) include Federal agencies; State cooperative institutions; academic institutions offering degrees in the study of food, forestry, and agricultural sciences; and non-profit organizations exempt from taxes under §501(c)(3) of the tax code. Types of research funded could include:

      ‘‘(A) biocontrol of nonnative pests & diseases or noxious weeds severely damaging native tree species [the bill does not specify, but Project CAPTURE identifies many qualifying species; see also my earlier blog];  

‘‘(B) exploration of genetic manipulation of the plant pests or noxious weeds;

‘‘(C) enhancement of pest-resistance mechanisms of hosts; and

‘‘(D) development of other strategies for restoring individual tree species.

The maximum amount of such grants is $400,000 per year.

Entities which could apply for the implementation grants (§ 4 of the bills) include a cooperating forestry school; a land-grant college or university; a State agricultural experimental station; a 501(c)(3) organization. Funding would begin at $3 million for FY 2023 and rise to $10 million for FY 2026.

The Secretary of Agriculture would be guided in implementing these programs by two committees. One – the committee of experts – would constitute representatives of the USFS, APHIS, ARS & State forestry agencies. The second – the advisory committee – would be composed of representatives of land-grant colleges and universities and affiliated State agriculture experiment stations, forest products industry, recreationists, and professional forester, conservation, and conservation scientist organizations.

Port-Orford cedar seedlings at USFS Dorena Center – a model for success! Photo provided by Richard Sniezko

Please contact your Member of Congress (Representative) and senators to urge them to support inclusion of these provisions in the Farm Bill.  [Remember: they work for us!] Telling them of your support for these bills is especially important if your Representative or Senator is on the Agriculture Committee.  I list those legislators here:

StateHOUSE AGRIC COMMSENATE AGRIC COMM
ALBarry MooreTommy Tuberville
ARRick CrawfordJohn Boozman
CADoug Lamalfa
John Duarte
Jim Costa
Salud Carbajal
 
COYadira CaraveoMichael Bennet
CTJahana Hayes 
FLKat Cammack
Darren Soto
 
GAAustin Scott
David Scott
Sanford Bishop
Raphael Warnock
HIJill Tokuda 
IARandy Feenstra
Zach Nunn
Joni Ernst
Charles Grassley
ILMike Bost
Mary Miller
Nikki Budzinski
Eric Sorensen
Jonathan Jackson
Richard Durbin
INJim BairdMike Braun
KSTracey Mann
Sharice Davids
Roger Marshall
KY Mitch McConnell
MAJim McGovern 
MEChellie Pingree 
MIElissa SlotkinDebbie Stabenow
MNAngie CraigAmy Klobuchar
Tina Smith
MOMark Alford 
MSTrent KellyCindy Hyde-Smith
NCDavid Rouzer
Alma Adams
 
ND John Hoeven
NEDon BaconDeb Fischer
NJ Cory Booker
NMGabe VasquezBen Ray Lujan
NYMarc Molinaro
Nick Langworthy
Kirsten Gillibrand
OHMax Miller
Shontel Brown
Sherrod Brown
OKFrank Lucas 
ORLori Chavez-Deremer
Andrea Salinas
 
PAGlenn ThompsonJohn Fetterman
  
SDDusty JohnsonJohn Thune
TNScott Desjarlais
Brad Finstad
 
TXRonny Jackson
Monica de la Cruz
Jasmine Crockett
 
VAAbigail Spanberger 
VTPeter Welch 
WAMarie Gluesenkamp Perez 
WIDerrick van Orden 

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Global Overview of Bioinvasion in Forests

black locust – one of the most widespread invasive tree species on Earth; photo via Flickr

In recent years there has been an encouraging effort to examine bioinvasions writ large see earlier blogs re: costs of invasive species – here and here. One of these products is the Routledge Handbook of Biosecurity and Invasive Species (full citation at end of this blog). I have seen only the chapter on bioinvasion in forest ecosystems written by Sitzia et al. While they describe this situation around the globe, their examples are mostly from Europe.

Similar to other overviews, this article re-states the widely-accepted attribution of rising numbers of species introductions to globalization, especially trade. In so doing, Sitzia et al. assert that the solution is not to curtail trade and movement of people, but to improve scientific knowledge with the goal of strengthening biosecurity and control programs. As readers of this blog know, I have long advocated more aggressive application of stronger restrictions on the most high-risk pathways. Still, I applaud efforts to apply science to risk assessment.

Sitzia et al. attempt to provide a global perspective. They remind readers that all major forest ecosystems of Earth are undergoing significant change as a result of conversion to different land-uses; invasion by a wide range of non-native introduced species—including plants, insects, and mammals; and climate change. These change agents act individually and synergistically. Sitzia et al. give greater emphasis than other writers to managing the tree component of forests. They explain this focus by asserting that forest management could be either the major disturbance favoring spread of non-native species or, conversely, the only way to prevent further invasions. They explore these relationships with the goal of improving conservation of forest habitats.

Japanese stiltgrass invasion; photo by mightyjoepye via Flickr

Sitzia et al. focus first on plant invasions. They contend that – contrary to some expectations – plants can invade even dense forests despite competition for resources. They cite a recent assessment by Rejmánek & Richardson that identified 434 tree species that are invasive around Earth. Many of these species are from Asia, South America, Europe, and Australia. These non-native trees can drive not only changes in composition but also in conservation trajectories in natural forests. However, the example they cite, Japanese stilt grass (Microstegium vimineum) in the United States, is not a tree! Sitzia et al. note that in other cases it is difficult to separate the impacts of management decisions, native competitive species, and non-native species.

Sitzia et al. note that plant invasions might have a wide array of ecological impacts on forests. They attempt to distinguish between

  • “drivers” of environmental change – including those with such powerful effects that they call them “transformers”;  
  • “passengers” whose invasions are facilitated by other changes in ecosystem properties; and
  • “backseat drivers” that benefit from changes to ecosystem processes or properties and cause additional changes to native plant communities.

An example of the last is black locust (Robinia pseudoacacia). This North American tree has naturalized on all continents. It is a good example of the management complexities raised by conflicting views of an invasive species’ value, since it is used for timber, firewood, and honey production.

Sitzia et al. then consider invasions by plant pathogens. They say that these invasions are one of the main causes of decline or extirpations in tree populations. I applaud their explicit recognition that even when a host is not driven to extinction, the strong and sudden reduction in tree numbers produces significant changes in the impacted ecosystems.

American chestnut – not extinct but ecological role gone; photo by F.T. Campbell

Sitzia et al. contend that social and economic factors determine the likelihood of a species’ transportation and introduction. Specifically, global trade in plants for planting is widely recognized as being responsible for the majority of introductions. Introductions via this pathway are difficult to regulate because of the economic importance (and political clout) of the ornamental plants industry, large volumes of plants traded, rapid changes in varieties available, and multiple origins of trade. As noted above, the authors seek to resolve these challenges by improving the scientific knowledge guiding biosecurity and control programs. In the case of plant pathogens, they suggest adopting innovative molecular techniques to improve interception efficiency, esp. in the case of latent fungi in asymptomatic plants.

The likelihood that a pathogen transported to a new region will establish is determined by biogeographic and ecological factors. Like other recent studies, Sitzia et al. attempt to identify important factors. They name a large and confusing combination of pathogen- and host-specific traits and ecosystem conditions. These include the fungus’ virulence, host specificity, and modes of action, reproduction, and dispersal, as well as the host’s abundance, demography, and phytosociology. A key attribute is the non-native fungus’ ability to exploit micro-organism-insect interactions in the introduced range. (A separate study by Raffa et al. listed Dutch elm disease as an example of this phenomenon.)  I find it interesting that they also say that pathogens that attack both ornamental and forest trees spread faster. They do not discuss why this might be so. I suggest a possible explanation: the ornamental hosts are probably shipped over wide areas by the plant trade.

surviving elms in an urban environment; photo by F.T. Campbell

Sitzia et al. devote considerable attention to bioinvasions that involve symbiotic relationships between bark and ambrosia beetles and their associated fungi. These beetles are highly invasive and present high ecological risk in forest ecosystems. Since ambrosia beetle larvae feed on symbiotic fungi carried on and farmed by the adults inside the host trees, they are often polyphagous. Bark beetles feed on the tree host’s tissues directly, so they tend to develop in a more restricted number of hosts. Both can be transported in almost all kinds of wood products, where they are protected from environmental extremes and detection by inspectors. Sitzia et al. specify the usual suspects: wood packaging and plants for planting, as ideal pathways. These invasions threaten indigenous species by shifting the distribution and abundance of certain plants, altering habitats, and changing food supplies. The resulting damage to native forests induces severe alterations of the landscape and causes economic losses in tree plantations and managed forests. The latter losses are primarily in the high costs of eradication efforts – and their frequent failure.

Eucalyptus plantation in Kwa-Zulu-Natal, South Africa; photo by Kwa-Zulu-Natal Department of Transportation

Perhaps their greatest contribution is their warning about probable damage caused by invasive forest pests in tropical forests. (See an earlier blog about invasive pests in Africa.) Sitzia et al. believe that bark and ambrosia beetles introduced to tropical forests threaten to cause damage of the same magnitude as climate change and clear cutting, but there is little information about such introductions. Tropical forests are exposed to invading beetles in several ways:  

1) A long history of plant movement has occurred between tropical regions. Sitzia et al. contend that the same traits sought for commercial production contribute to risk of invasion.

2) Logging and conversion of tropical forests into plantation forestry and agriculture entails movement of potentially invasive plants to new areas. Canopies, understory plant communities, and soils are all disturbed. Seeds, insects, and pathogens can be introduced via contaminated equipment.

3) Less developed nations are often at a disadvantage in managing potential invasion. Resources may be fewer, competing priorities more compelling, or potential threats less obvious.

Sitzia et al. call for development of invasive species management strategies that are relevant to and realistic for less developed countries. These strategies must account for interactions between non-native species and other aspects of global environmental change. Professional foresters have a role here. One clear need is to set out practices for dealing with conflicts between actors driven by contrasting forestry and conservation interests. These approaches should incorporate the goals of shielding protected areas, habitat types and species from bioinvasion risk. Sitzia et al. also discuss how to address the fact that many widely used forestry trees are invasive. (See my earlier blog about pines planted in New Zealand.)

planted forest in Sardinia, Italy; photo by Torvlag via Flickr

In Europe, bark beetle invasions have damaged an estimated ~124 M m2 between 1958 and 2001. Sitzia et al. report that the introduction rate of non-native scolytins has increased sharply. As in the US, many are from Asia. They expect this trend to increase in the future, following rising global trade and climate change. Southern – Mediterranean – Europe is especially vulnerable. The region has great habitat diversity; a large number of potential host trees; and the climate is dry and warm with mild winters. The region has a legacy of widespread planting of non-native trees which are now important components of the region’s economy, history and culture. These include a significant number of tree species that are controversial because they are – or appear to be – invasive. Thus, new problems related to invasive plants are likely to emerge.

Noting that different species and invasion stages require different action, Sitzia et al. point to forest planning as an important tool. Again the discussion centers on Europe. Individual states set forest policies. Two complications are the facts that nearly half of European forests are privately owned; and stakeholders differ in their understanding of the concept of “sustainability”. Does it mean ‘sustainable yield’ of timber? Or providing multiple goods and services? Or sustaining evolution of forest ecosystems with restrictions on the use of non-native species? Resolving these issues requires engagement of all the stakeholders.

Sitzia et al. say there has recently been progress. The Council of Europe issued a voluntary Code of Conduct on Invasive Alien Trees in 2017 that provides guidelines on key pathways. A workshop in 2019 elaborated global guidelines for the sustainable use of non-native tree species, based on the Bern Convention Code of Conduct on Invasive Alien Trees. The workshop issued eight recommendations:

  • Use native trees, or non-invasive non-native trees;
  • Comply with international, national, and regional regulations concerning non-native trees;
  • Be aware of the risk of bioinvasion and consider global change trends;
  • Design and adopt tailored practices for plantation site selection and silvicultural management;
  • Promote and implement early detection and rapid response programs;
  • Design and adopt practices for invasive non-native tree control, habitat restoration, and for dealing with highly modified ecosystems;
  • Engage with stakeholders on the risks posed by invasive NIS trees, the impacts caused, and the options for management; and
  • Develop and support global networks, collaborative research, and information sharing on native and non-native trees.

SOURCE

Sitzia, T., T. Campagnaro, G. Brundu, M. Faccoli, A. Santini and B.L. Webber. 2021 Forest Ecosystems. in Barker, K. and R.A. Francis. Routledge Handbook of Biosecurity and Invasive Species. ISBN 9780367763213

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Help Fight for $$ to Protect Forests

Help Fight for Money to Protect Forests

This blog asks YOU!!! to support funding for some of the key USDA programs. This blog focuses on USDA’s Animal and Plant Health Inspection Service (APHIS). APHIS is responsible for preventing introduction of pests that harm agriculture, including forests; and for immediate efforts to eradicate or contain those pests that do enter. While most port inspections are carried out by the Department of Homeland Security Bureau of Customs and Border Protection, APHIS sets the policy guidance. APHIS also inspects imports of living plants.

Please help by contacting your members of the House and Senate Appropriations Committees. I provide a list of members – by state – at the end of this blog. APHIS is funded by the House and Senate Appropriations Subcommittees on Agriculture and Related Agencies. These Subcommittees have scheduled hearings on the topic and I’ve drafted written testimony for them. I expect CISP will be joined by additional members of the Sustainable Urban Forest Coalition in signing the testimony. You can add the crucial voice of constituent’s support.

I will blog soon about funding for USDA’s Forest Service (USFS) – I don’t yet have necessary information to suggest specific funding levels.

Your letter or email need be no more than a couple paragraphs. To make the case for greater funding, feel free to pick-and-choose from the information that follows. Your greatest impact comes from speaking specifically about what you know and where you live.

These are the specific dollar amounts we’d like you to ask for. The rationale for each is below.

Appropriations for APHIS programs (in $ millions)

ProgramFY 2022 (millions)FY 2023FY 2024 Pres.’ request Our ask
Tree & Wood Pest$61$63$64$65 M
Specialty Crops$210$216$222$222 M
Pest Detection$28$29$30$30 M
Methods Development$21$23$23$25 M

The Costs of Introduced Pests

Introduced pests threaten many forest products and services benefitting all Americans, including wood products, wildlife habitat, carbon sequestration, clean water and air, storm water management, lower energy costs, improved health, aesthetic enjoyment, and related jobs. Already, the 15 most damaging non-native pests threaten at least 41% of forest biomass in the “lower 48” states. In total, these 15 species have caused an additional annual conversion of live biomass to dead wood at a rate similar in magnitude to that attributed to fire (5.53 TgC per year for pests versus 5.4 to 14.2 TgC per year for fire) [Fei et al.; full citation at end of blog; see also earlier].

tanoaks killed by SOD; Oregon Department of Forestry photo

These pests also impose significant costs that are borne principally by municipal governments and homeowners. As more pests have been accidentally introduced over time, these costs have risen. A study published last year [Hudgins et al.] projected that by 2050 1.4 million street trees in urban areas and communities will be killed by introduced insect pests. Municipalities on the forefront include Milwaukee and Madison Wisconsin; the Chicago area; Cleveland; and Baltimore, Towson, and Salisbury, Maryland. Removing and replacing these trees is projected to cost cities $30 million per year. Additional urban trees – in parks, on homeowners’ properties, and in urban woodlands – are also expected to die and require removal and replacement.

Pathways of Introduction

Tree-killing pests are linked to the international supply chain. Many pests—especially the highly damaging wood-borers like emerald ash borer, Asian longhorned beetle, polyphagous and Kuroshio shot hole borers, and redbay ambrosia beetle—arrive in inadequately treated crates, pallets, and other forms of packaging made of wood. Other pests—especially plant diseases like sudden oak death and sap sucking insects like hemlock woolly adelgid—come on imported plants. Some pests take shelter, or lay their eggs, in or on virtually any exposed hard surface, such as steel, decorative stone, or shipping containers.

infested wood from a crate; Oregon Department of Agriculture photo

Wood Packaging

Imports from Asia have historically transported the most damaging pests, e.g., Asian longhorned beetle, emerald ash borer, redbay ambrosia beetle, and the invasive shot hole borers. For decades goods from Asia have dominated imports. As of February 2022, U.S. imports from Asia were running at a rate of 20 million shipping containers per year. A recent analysis [Haack et al.; see also here] indicates that at least 33,000 of these shipping containers, perhaps twice that number, are carrying a tree-killing pest. These facts have led scientists to project [Leung et al.] that by 2050, the number of non-native wood-boring insects established in the US could triple. Hudgins et al. say the greatest damage would occur if an Asian wood-boring insect that attacks maples or oaks were introduced. Such a pest could kill 6.1 million trees and cost American cities $4.9 billion over 30 years. The risk would be highest if this pest were introduced to the South – and U.S. southern ports are receiving more direct shipments from Asia after the expansion of the Panama Canal in 2016. https://www.nivemnic.us/?m=202207

After introduction of the ALB, APHIS acted to curtail further introductions in wood packaging from China. First – in 1998 – APHIS required China to treat its wood packaging. Second, it worked with foreign governments to develop the International Standard for Phytosanitary Measures (ISPM) #15. The U.S. and Canada began phasing in ISPM#15 in 2005 with full implementation in 2006. Under ISPM#15, all countries shipping goods to North America must treat their wood packaging according to specified protocols with the goal of “significantly reducing” the risk that pests will be present.

However, as I have often blogged [see blogs under “wood packaging” category on this site] ISPM#15 has fallen short. Haack et al. found that as recently as 2020, 0.22% [1/5th of 1 percent] of the shipping containers entering the U.S. were infested by a tree-killing insect. This equates to tens of thousands of containers harboring tree-killing insects.

Worse, the data indicate that our trade partners’ compliance with the rules has deteriorated; the “approach rate” of pest-infested wood packaging fell in 2005-2006, but has since gone back up.

The most troubling offender is China. Although required since 1998 to treat its wood packaging, China consistently has one of the highest pest approach rates: it was 0.73% [or ¾ of 1%] during the 2010- 2020 period. This is three times the global average for the period. Since China supplied 40.7% of U.S. imports in 2022 [Szakonyi], or 5,655,000 containers. Thus China alone might be sending to the U.S. 30,000 containers infested with tree-killing insects. These pests threaten our urban, rural, and wildland forests and reduce forest productivity, carbon sequestration, the rural job base, water supplies and quality, and many other ecosystem services. 

ISPM#15 falls short at the global level. The fact that a pallet or crate bears the mark indicating that it complies with ISPM#15 has not proved to be reliable.

You might ask your Member of Congress or Senators to ask APHIS what steps it will take to correct the problem of Chinese non-compliance. (Remind him or her that that the Asian longhorned beetle, emerald ash borer, and many other insects of so-far lesser impact were introduced in wood packaging from China.

Asian longhorned beetle

Remind them also that the Department of Homeland Security’s Bureau of Customs and Border Protection has twice enhanced its enforcement of wood packaging rules. In 2017 it began penalizing importers of non-compliant wood packaging under Title 19 United States Code (USC) §1595a(b) or under 19 USC §1592. In 2021, it incorporated the wood packaging requirements into its voluntary C-TPAC program.)  

You might also urge them to ask APHIS what steps it is taking at the global level to improve the efficacy of ISPM#15 – or to replace it if necessary to ensure that pests are not being introduced.

spread of beech leaf disease

Imported Plants (“Plants for Planting”)

Some pest types—especially plant diseases like sudden oak death and sap-sucking insects like hemlock woolly adelgid—come on imported plants. The U.S. imported about 5 billion plants in 2021 [MacLachlan]. Recent introductions probably via this pathway include several pathogens — Phytophthoras, rapid ʻōhiʻa death in Hawai`i, beech leaf disease (established from Ohio to Maine), and boxwood blight. Insects have also been introduced on imported plants recently; one example is the elm zigzag sawfly (present in North Carolina, Virginia, and New York and Ontario). https://www.nivemnic.us/?p=4115

An analysis of data from 2009 [Liebhold et al.] found that approximately 12% of plant shipments were infested by a pest. This pest approach rate is more than 50 times higher than the 0.22% approach rate for wood packaging. APHIS has adopted several changes to its phytosanitary system for imported plants in the decade since 2009. A few studies have been published, but they have focussed on insects and excluded pathogens. We have noted that pathogens continue to be introduced via the plant trade. Therefore, please ask your Member or Senators to ask APHIS to facilitate an independent analysis of the efficacy of the agency’s current phytosanitary programs to prevent introductions of pests on important plants, with an emphasis on introductions of plant pathogens.

APHIS is responsible for preventing spread of the SOD pathogen, Phytophthora ramorum, through trade in nursery plants. In recent years California has had few detections in nurseries and little expansion in forests – but the situation suggests that this good news is probably more the result of the drought than of program efficacy. In cooler, wetter conditions in Oregon and Washington, detections in nurseries and alarming detections in the forest or plantings continue.

In 2022, the APHIS SOD Program supported detection and regulatory activities in 25 states. P. ramorum was detected at 18 establishment, 12 of which were first-time detections. The California nursery regulatory program – which is funded by APHIS – saw reduced funding in 2022. We think these cuts are unwise since this year’s very wet winter will probably lead to a new disease outbreaks. Programs in Oregon and Washington continue to detect infestations in additional retailers brought in by plants bought from other nurseries. Washington responded to four separate “trace forward” incidents, one involving more than 160 residential sites. Clearly, the federal-state program is not succeeding in eradicating P. ramorum from nurseries. Please suggest that your Congressperson and Senators ask APHIS what steps it is taking to improve the efficacy of the SOD program.

SOD-infected rhodoendron on plants in Indiana; photo by Indiana Department of Natural Resources

In the East, P. ramorum was found in three of 65 streams sampled in 10 states in 2022 (reaching across the Southeast from Mississippi through North Carolina, plus Texas, Maryland, Pennsylvania, and Illinois). One stream is troubling: a first-time detection in South Carolina, with no obvious nursery source. Since stream sampling began, P. ramorum has been detected from eight streams in four states, Alabama, Mississippi, North Carolina, and now South Carolina. The pathogen has been present in some of these streams for more than 10 years.

Oregon faces particularly high risks. Three of the four known strains of P. ramorum are established in Oregon forests. One of them, the EU1 lineage, is more aggressive than the NA1 clonal lineage already present in forests. In addition, the EU1 strain might facilitate sexual reproduction of the pathogen, thus exacerbating Oregon’s struggle to contain the disease.

As we know, introduced pests do not stay in the cities where they first arrived — they spread! Often that spread is facilitated by our movement of firewood, plants, or outdoor household goods such as patio furniture.

The beech trees so important to wildlife conservation in the Northeast are under attack by two pathogens and at risk to an insect. Most alarming is the spread – in a dozen years! — of beech leaf disease DMF from Ohio to Maine. A leaf-feeding weevil is spreading south in eastern Canada. Please suggest that your Member or Senators to ask APHIS what steps it is taking to prevent the weevil’s introduction to the U.S.

‘Ōhi‘a trees make up 80% of the biomass of forests in both wet and dry areas of the Hawaiian archipelago. It is under attack by two diseases caused by introduced pathogens first detected in 2010. ‘Ōhi‘a forests support more threatened and endangered species than any other forest system in the U.S. They also play a uniquely important role in providing other ecosystem services, including water supplies.

Asking for the Money Pest Problems Deserve


To respond effectively to these pests and to the others that will be introduced in coming years, the key APHIS programs identified above must have adequate funds. The funding levels I request – and hope you will support – are lower than I would wish, but everyone expects the Congress to refuse significant increases in funding (see table at beginning of this blog).

The Tree and Wood Pests account supports eradication and control efforts targeting principally the ALB and spongy (= gypsy) moth. Eradicating the ALB normally receives about two-thirds of the funds. The programs in Massachusetts, New York, Ohio, and South Carolina must continue until eradication succeeds.

Oregon detected the EAB in 2022. Although the state and Portland have been preparing for a decade for this eventuality, there will still be significant impacts. Four percent of Portland’s street trees are ash – more than 9,000 trees. Young ash constitute three percent of young trees in parks. Loss of Oregon’s ash will also have severe ecosystem impacts. In Willamette Valley wetlands, ash constitutes up to 100% of the forest trees. Washington and California are also concerned. Indeed, the Hudgins study identified Seattle and Takoma as likely to lose thousands of ash trees. The numerous ash in riparian forests, windbreaks, and towns of North Dakota are also at risk since the EAB is established in South Dakota, Minnesota, and Manitoba.

APHIS manages damaging pests introduced on imported plants or other items through its Specialty Crops program. The principal example is its efforts to prevent spread of the SOD pathogen through the interstate trade in nursery plants. We noted above that this program is not as successful as it should be. We support the Administration’s request for $222 million; however, you might suggest that your Member or Senator urge APHIS to allot adequate funding under this budget line to management of SOD, rapid ʻōhiʻa death pathogens in Hawai`i, and beech leaf disease and elm zig-zag sawfly in the East.

The Pest Detection program is key to the prompt detection of newly introduced pests that is critical to successful pest eradication or containment. The “Methods Development” program enables APHIS to improve development of essential detection and eradication tools.

The Administration’s request include a $1 million emergency fund. This is far below the level needed to respond when a new pest is discovered. Funding constraints have hampered APHIS’ response to past pest incursions.

Please note that many of the members of the Agriculture Appropriations Subcommittee are from states where non-native pests are probably not top of mind. It is important that everyone that knows about these threats communicate with your Member/Senators!!

Members of House or Senate Subcommittees that Fund APHIS

(Names of Senators are italicized)

STATEMEMBERAPHIS APPROPHOUSESENATE
AKLisa Murkowski  X
ALJerry Carl Katie BrittXX  X
CalifBarbara Lee David Valadao Josh Harder Diane FeinsteinX X   XX X X        X
FLDebbie Wasserman Scultz Scott FranklinX XX X 
GASanford BishopXX 
IDMike Simpson X 
ILLauren UnderwoodXX 
KSJerry MoranX X
KYMitch McConnellX X
LAJulia Letlow Ashley HinsonX XX X 
MDAndy Harris Chris Van HollenXX    X
MEChellie Pingree Susan CollinsX XX  X
MIJohn Moolenaar Gary PetersX Xx  X
MNBetty McCollumXX 
MSCindy Hyde-SmithX X
MTJon Tester Ryan ZinkeX    XX
NBDeb Fischer  X
NDJohn HoevenX X
NMMartin HeinrichX X
NVMark Amodei X 
OHMarcy KapturXX 
ORJeff MerkleyXXX
PAGuy ReschenthalerXX 
RIJack Reed  X
TXMichael Cloud Jake EllzeyXX X 
UTChris Stewart X 
VABen ClineXX 
WADan Newhouse Derek KilmerXX X 
WVShelly Moore Capito Joe Manchin  X X X
WIMark Pocan Tammy BaldwinX XX  X

SOURCES

Fei, S., R.S. Morin, C.M. Oswalt, and A.M. 2019. Biomass losses resulting from insect and disease invasions in United States forests. PNAS August 27, 2019. Vol. 116 No. 35  17371–17376

Haack R.A., J.A. Hardin, B.P. Caton and T.R. Petrice .2022. Wood borer detection rates on wood packaging materials entering the United States during different phases of ISPM#15 implementation and regulatory changes. Front. For. Glob. Change 5:1069117. doi: 10.3389/ffgc.2022.1069117

Hudgins, E.J., F.H. Koch, M.J. Ambrose, and B. Leung. 2022.  Hotspots of pest-induced US urban tree death, 2020–2050. Journal of Applied Ecology

Leung, B., M.R. Springborn, J.A. Turner, and E.G. Brockerhoff. 2014. Pathway-level risk analysis: the net present value of an invasive species policy in the US. Front Ecol Environ 2014; doi:10.1890/130311

Liebhold, A.M., E.G. Brockerhoff, L.J. Garrett, J.L. Parke, and K.O. Britton. 2012. Live Plant Imports: the Major Pathway for Forest Insect and Pathogen Invasions of the US. Frontiers in Ecology.

MacLachlan, M.J., A. M. Liebhold, T. Yamanaka, M. R. Springborn. 2022. Hidden patterns of insect establishment risk revealed from two centuries of alien species discoveries. Sci. Adv. 7, eabj1012 (2021).

Szakonyi, M. 2023. Sourcing shift from China pulls US import share to more than a decade low.

One State’s Program Illustrates Importance of Federal Funding

Dead ash along Mattawoman Creek in 2019; Mattawoman Creek is a Maryland tributary of the Potomac River, hence of the Chesapeake Bay. Photo courtesy of Leslie A. Brice

In this blog I describe one state’s forest health efforts – Virginia. The pertinent lesson is the importance of external funding, especially that provided by USFS Forest Health Protection program, in supporting states’ efforts. Is your state’s forest health program as dependent upon federal funding as Virginia’s is? If so, there is a role for everyone: lobby your Congressional representative and senators to increase funding for this program!

I have based most of this blog on the Virginia Department of Forestry’s annual report for 2022.

Forests grow on more than 16 million acres in Virginia, or 62% of the Commonwealth’s land area. Eighty percent of these forests are hardwood or hardwood-pine. They break down as follows: 61% oak-hickory; 11% oak-pine; 5% bottomland hardwood; and 2% maple-beech-birch. A fifth of the forest is pine, composed of pine plantation (14%) and natural pine (7%). The long term trend is growth, especially among hardwoods.

The report devotes much of its attention to the agency’s programs to advise private landowners (individuals own 80% of the Commonwealth’s forestland); fire management (including prescribed burns); and state and federal conservation programs (e.g., easements). A major program shares reforestation costs on harvested pine lands. In 2022, this program assisted reforestation practices on 74,702 acres. Virginia has an impressive tree-raising program. VDOF grows more than 40 species, including longleaf and shortleaf pine, several spruce species, and dozens of hardwoods. The aim is to provide stock suited for the Commonwealth’s soils and climate. Many of the hardwood species are grown from acorns and seeds collected and donated by volunteers.

VDOF also helps to protect and improve the Commonwealth’s water quality through tree planting and sound forest management. VDOF has an unusual responsibility: enforcing the Virginia Silvicultural Water Quality Law.

The report also summarizes several urban and community forestry programs focused on education, community engagement, tree selection, and grants for tree planting to ensure canopy retention & management.

Forest Health – Importance of Federal Funding

Spongy Moth

Slightly over 1 million acres was mapped by aerial surveys in FY22. I believe the funding for these surveys came largely from the USFS. The surveys detected heavy to moderate defoliation by the spongy moth on 24,493 acres (almost twice the area detected in FY21). The spongy moth infestation is primarily in counties on the western side of the state, in the mountainous region, which has the highest densities of oaks and other hardwoods.

Spotted Lanternfly

The spotted lanternfly (SLF) was detected in Virginia early – in 2018 in Winchester at the northern end of the Shenandoah Valley. Winchester is connected to central Pennsylvania by Interstate 81, so rapid movement of SLF to Virginia from outbreaks slightly to the east of I-81 in Pennsylvania doesn’t surprise me. SLF has been spreading south along the mountains and over the Blue Ridge to Loudoun and Fairfax counties (in 2022). Fairfax County has announced a four-year, $200,000 effort to try to slow SLF spread by eradicating high densities of its preferred host, Ailanthus, from two county parks in the far south and north ends of the county. Ailanthus removal requires not just cutting the trees, but applying herbicide to prevent sprouting from the roots. This work is funded by the county, the local park authority and a $20,000 grant from the regional energy company, Dominion Energy Charitable Foundation.

Emerald Ash Borer

Virginia has six species of ash: white and green (both common), and smaller populations of black, blue, pumpkin and Carolina. EAB is now confirmed in 84 counties – most of the Commonwealth except the far southeast. The Department of Forestry treats 130 – 150 trees per year – half or more on state lands. At least in FY21, the funding came from federal sources. The report also notes outreach efforts at two minor league baseball games. Virginia recently adopted a priority of protecting the Chesapeake Bay watershed by promoting tree planting in riparian forest buffers. The EAB threatens this goal; see the photo (at top) of ash mortality along a Maryland tributary of the Bay. In 2021, EAB was detected in Gloucester County – a peninsula east of the York River that has Bay shoreline on the eastern side, tributary on the west (see photo).

Gloucester Point – Virginia Institute of Marine Sciences “living shoreline”; EAB was detected in Gloucester County in 2021, threatening riparian areas. Photo courtesy of the Chesapeake Bay Program

Threats to Beech

Beech bark disease is present in the western mountainous parts of the Commonwealth. One new county – Augusta – was detected in 2022. Three other counties are infested with the scale, but the fungal pathogen has not yet been detected. The alarming new threat, beech leaf disease, was detected in Prince William County in 2021. In 2022, it was confirmed in neighboring Fairfax County. The source of funding is not specified.

beech in a typical northern Virginia second-growth forest; photo by F.T. Campbell

Laurel Wilt Disease

Sassafras; photo by David Moynihan

I am pleased that the Commonwealth is paying attention to laurel wilt disease, which has been spreading north on sassafras. The closest outbreaks are in Tennessee, to the southwest of Virginia. The Commonwealth hosted a detection training program attend by 26 participants from six agencies from three states. The report does not specify the source of the funding.

Southern Pine Beetle

Virginia has also utilized funding from the USFS FHP program to manage the southern pine beetle. Since the program’s inception in 2004, Virginia has thinned pines on more than 70,000 acres, including 4,240 acres in FY22.

Invasive Plants

USFS FHP invasive species grants funded control treatments of invasive plants on somewhat less than 1,300 acres of state lands. Different figures on different pages of the report cause confusion. However, it is clear that nearly all the funds came from the USFS FHP program. Ailanthus was the main target; other species mentioned are privet, mimosa, autumn olive and Miscanthus.

State Funding of Conservation Initiatives; Will They Continue?

While the state’s government was controlled by Democrats, the governor and state legislature launched new programs with broader conservation goals. It is unclear whether they will continue now that Republicans have won the governorship and control of the House of Delegates.

Among the programs enjoying increased funding from the state budget during the current two-year cycle are

  • Efforts to restore depleted populations of two groups of tree taxa, shortleaf and longleaf pines. The emphasis has shifted to longleaf pine: the number of projects and acreages rose from 220 acres in FY21 to 1,212 acres in FY22. Restoration of shortleaf pine forests was limited to slightly over 600 acres in both years.
  • Programs to improve management of hardwood stands. These projects included crop tree release, control of “invasive species” (I think probably targetting invasive plants), prescribed burning and commercial thinning. There were also several demonstration projects on state-owned lands, a small land-owner planning assistance program, and training of state foresters and private consulting foresters in hardwood management. Apparently these aspects had been largely ignored in the past.
  • Creation of a dedicated Watershed program focused on increasing riparian forest buffers. This section of the report does not mention the threat posed by loss of ash to the emerald ash borer (EAB) [see EAB section above]
  • Urban forestry projects, many linked to protecting surface and ground water (including Chesapeake Bay watershed).

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

see also the article about beech leaf disease in the mid-Atlantic region written by Gabe Popkin; posted here

Protecting ash & hemlock – latest information

nearly dead ash in Shenandoah National Park; photo by F.T. Campbell

I participated in the annual USDA Interagency Invasive Species Research Forum in Annapolis in January 2023; as usual, I learned interesting developments. I focus here on updates re: efforts to protect ash and hemlock

Hopeful Developments re: countering EAB to protect ash

There are hopeful results in both the biocontrol and resistance breeding programs. The overall goal is to maintain ash as a viable part of the North American landscape.

Biocontrol

Juli Gould (APHIS) reminded us that the agency began a classical biocontrol program targetting emerald ash borer (EAB) in 2003 – only a year after EAB had been detected and much earlier than is the usual practice. [Thank you, former APHIS PPQ Deputy Administrator Ric Dunkle!] By 2007 scientists had identified, tested, and approved three agents; a fourth was approved in 2015.

Nicole Quinn (University of Florida) stressed that the egg prarasitoid, Oobius — if it is effective — could prevent EAB from damaging trees. However, it is so small that it is very difficult to sample. One small study demonstrated that Oobius will parasitize EAB eggs laid in white fringe trees (Chionanthus virginicus) as well as in ash. This is important because it means this secondary host is not likely to be a reservoir of EAB.

The numbers

According to Ben Slager (APHIS), more than 8 million parasitoids have been released at 950 sites since the program began in 2007. These releases have been in 418 counties in 31 states, DC, and four Canadian provinces. Still, these represent just 28% of infested counties. Parasitoids have been recovered in 21 states and two provinces.

Rafael de Andrade (University of Maryland) specified that these releases included more than 5 million Tetrastichus in 787 sites; ~2.5 million Oobius in 828 sites in 30 states; ~500,000 Spathius agrili – lately only north of the 40th parallel. Releases of Spathius galinae began in 2015; so far ~ 470,000 in 395 sites.

 Impact

Several presenters addressed questions of whether the agents are establishing, dispersing, and – most important – improving ash survival. Also, can classical biocontrol be integrated with other management techniques, especially use of the pesticide emamectin benzoate.

Dispersal

Several studies have shown that the four biocontrol agents disperse well (with the caveat that Oobius is very difficult to detect so its status is much less certain).

Implementation considerations

De Andrade found that the longer the delay between the date when EAB was detected and release of Oobius, the less likely Oobius will be recovered. Tetrastichus surprised because the higher the numbers released, the fewer were recovered. He could determine no association between recovery of S. agrili and variations in release regime [numbers released; delay in releasing biocontrol agents; or frequency of releases]. He said it is too early to assess Sp. galinae since releases began only in 2015, but he did see expected relationship to propagule pressure – the more wasps released, the higher the number that were recovered. Sp. galinae did surprise in one way: it seemed to perform better at lower latitudes. De Andrade noted he was working data from less than half of release sites. He asked collaborators to submit data!!!!

Initial signs of ash persistence and recovery 

Claire Rutledge (Connecticut Agriculture Experiment Station) determined that

  • More large trees were surviving in plots where the biocontrol agents were released
  • EAB density was lower at long-invaded sites
  • Parasitism rates were similar across release age treatments and release/control plots

Gould focused on protecting saplings so they can grow into mature trees which could be sources of seeds to establish future generations. She noted that there are many “aftermath” forests across the northern United States – those dominated by ash saplings.

In Michigan, at a site of green ash, as of 2015 – 2021, EAB populations are still low, parasitism rate by Tetrastichus and S. galinae high. The percentage of saplings that remained healthy was greater than 80%. There were similar findings in white ash in New York: very low EAB larval density; and more than 70% of ash saplings had no fresh galleries. Gould reported that Tetrastrichus impcts could be detected within three years of release.

So, EAB are being killed by the biocontrol agents combined with woodpecker predation; but in their fourth instar, after considerable damage to the trees.

downy woodpecker in Central Park, NYC. photo by Steven Bellovin, Columbia University

Jian Duan reported on two long-term studies in green & white ash in Michigan and New England. His team used the most labor-intensive but best approach to determine EAB larval mortality and the cause – debarking trees – to determine whether the EAB larva were parasitized, were preyed on by woodpeckers, or were killed by undetermined cause, such as tree resistance, disease, or competition. In Michigan, he linked a crash of EAB population in 2010 was caused by Tetrastichus; EAB tried to recover, but crashed again, due to S. galinae. EAB larval densities had been reduced to 10 / m2. Predation by abundant woodpeckers and the native parasitoid Atanycolus was also important.

In New England, EAB has also declined from 20-30 larvae /m2 to ~ 10 m2.

In Michigan, healthy ash with dbh of larger than 5 inches were much more plentiful in sites where parasitoids had been released. Their survival/healthy rate also was much higher in release sites but the difference declined as years passed. In New England there were growing numbers of healthy trees in 2021-22; (almost none in 2017). Duan conceded that he could not prove a direct link but the data points to recovery.

Tim Morris (SUNY-Syracuse) found that white ash saplings continued to die in large numbers, but the mortality rate was significantly below the rate in 2017. Canopy conditions varied; some trees that were declining in 2013 were recovering in 2017. Forty percent of “healthy” ash in 2013 continued recovering in 2021. Few living trees were declining; trees were either healthy or dead. He thinks probably a combination of genetics and presence of parasitoids explains which trees recover. Morris also reported some signs of regeneration.

beaver feeding on ash saplings, Fairfax County, Va;
photo by F.T. Campbell

At this point, I noted that in parts of northern Virginia, beavers have killed ash saplings. Morris reported finding the same in some sites in New York. Perhaps others have, also; my comment was greeted by laughter.

Theresa Murphy (APHIS) looked at integration of biocontrol and insecticide treatment in urban and natural sites. A study of black and green ash in Syracuse, NY Naperville, IL, and Boulder, CO found continued high parasitism by Tetrasticus and S. galinae and woodpecker attacks in trees treated with emamectin benzoate. Researchers could not detect Oobius. By 2020, most of the untreated trees had died but treated trees remained healthy.

Murphy has begun studying integration of biocontrol and pesticides in green and black ash forests. The goal is to protect large trees to ensure reproduction; the biocontrol agents do not yet protect the large trees. This is especially important for black ash because it declines very quickly after EAB invades. Sites have been established in New York, through collaboration with New York parks, Department of Environmental Conservation, and the Mohawk tribe. She is still looking for sites in Wisconsin – where EAB is spreading more slowly than expected.

1 of the infested ash in Oregon; photo by Wyatt Williams, ODF

Max Ragozzino of the Oregon Department of Agriculture reported on imminent release of biocontrol agents targetting the recently detected outbreak there. I am encouraged by the rapid response by both the state and APHIS.

EAB resistance in ash

Jennifer Koch (USFS) said the goal is not to produce populations where every seedling is fully EAB-resistant, but to develop populations of ash trees with enough resistance to allow continued improvement through natural selection while retaining sufficient genetic diversity to adapt to future stressors (changing climate, pests, diseases). The program has developed methods to quantify resistance in individuals.. Initial field selections of “lingering ash” were shown to be able to kill as many as 45 % of EAB larvae. Already green ash seedling families have been produced by breeding lingering ash parents.  This first generation of progeny had higher levels of resistance, on average, than the parent trees.  Each generation of breeding can increase the proportion of resistance. Although the bioassays to test for EAB-resistance are destructive (e.g., cutting and peeling to count numbers of surviving larvae), the potted ash seedling stumps can resprout. Once the new sprouts are big enough they are planted in field trials to correlate bioassay results with field performers.  Poor performers are culled; those with higher levels of resistance remain and become sources of improved seed.

To ensure preservation of local adaptive traits, this process must be repeated with new genotypes to develop many seed orchards from across the species’ wide range. To support this work, concerned scientists are building multi-partner collaborative breeding networks. These organizations provide ways for citizens and a variety of partners to engage through monitoring and reporting lingering ash, making land available for test planting, and helping with the work of propagation.

See Great Lakes Basin Forest Health Collaborative » Holden Forests & Gardens (holdenfg.org), Monitoring and Managing Ash (MaMA) – A citizen-science-driven program for conservation and mitigation (monitoringash.org), and TreeSnap – Help Our Nation’s Trees! for more information.

Resistance levels in some of the first generation progeny were high enough for use in horticulture, where it is important that trees can remain healthy in challenging environments (street trees, city parks, landscaping, etc.). Koch hopes to develop about a dozen cultivars comprising the best-performing trees, appropriate for planting in parts of Ohio, Michigan, Indiana, and Pennsylvania.   Local NGO partners are planting some of these promising genotypes in Detroit to see how they withstand EAB attack.

a black ash swamp; photo via Flickr

The threat to black ash is especially severe, and this species presents unique difficulties. While scientists found several seedlings from unselected seedlots had killed high levels of larvae, those deaths did not always result in better tree survival. Koch thinks the tree’s defense response becomes detrimental to tree by blocking transport of water and nutrients. She is working with experts in genomics and others, such as Kew Royal Botanic Gardens, to try to identify candidate trees for breeding programs.  The genomics work has been supported by APHIS and the UK forest research agency, DEFRA. Michigan and Pennsylvania have supported the breeding work. USFS Forest Health Protection has supported work with black and Oregon ash (see below) (J. Koch, USFS, pers. comm.).

Koch has also begun working with Oregon ash, in collaboration with the USFS Dorena Genetic Resource Center (located in Cottage Grove, Oregon) and other partners.

dead hemlock in Massachusetts; photo by Ian Kinahan,
University of Rhode Island

Hemlock woolly adelgid

Scientists are still trying to find the right combination of biocontrol, chemical treatments, and silvicultural manipulation.

For several years, hope has focused on two has been on two predatory beetles, Laricobius nigrinus and L. osakiensis. Scott Salom (Virginia Tech) reports that release of these beetles over the past 20 years has had a significant impact on HWA density and tree photosynthetic rate and growth. However, Laricobius aredifficult to rear and they attack only the sistens generation of the adelgid. Ryan Crandall (University of Massachusetts) reports it has been difficult to establish these beetles in the Northeast. He links this difficulty is caused by temporary drops in HWA populations after cold snaps.

Scientists now agree that need to find predators that attack HWA during other parts of its lifecycle. Hope now focuses on silverflies — Leucotaraxis argenticollis and Le. piniperda.  While both species are established in eastern North America, the clades in the east feed almost exclusively on pine bark adelgid, and have not begun attacking HWA. Biocontrol practitioners therefore collect flies in the Pacific Northwest for release in the east. Salom is increasing his lab’s capacity to rear silverflies and exploring release strategies.

Preliminary evidence indicates that the western clades of Leucotaraxis are establishing, although data are not yet definitive (Havill, USFS).

Detecting the presence of biocontrol agents presents several challenges. Tonya Bittner (Cornell) described efforts to use eDNA analysis for this. Some puzzles have persisted; e.g., at some sites, she detected eDNA but caught no silverflies. This raised the question of long eDNA associated with the original release might persist. Another problem is that the assay cannot separate the introduced western L. nigrinus from the native congener, L. rubus (which also does not feed on HWA). She continues efforts to improve this technique.

Others explored interactions of the biocontrol agents with insecticides. Salom is studying the impact of soil-applied insecticides on Laricobius populations, which aestivate in the soil. Preliminary results showed significant reduction in the beetle’s population under soil drench application but not under soil injection. He has not yet analyzed all the data.

Michigan is trying to prevent spread of HWA from five counties along the eastern shore of Lake Michigan (where HWA was introduced on nursery stock) to widespread hemlock forests in northern part of the state. Phil Lewis (APHIS) is studying persistence of systemic insecticides in hemlock tissues, particularly twigs and needles. The pesticides involved are imidacloprid, dinotefuran, and Olefin. He has found that pesticide levels are highest 18 – 22 months after treatment, then decline. They are significantly higher after trunk injection compared to bark spray or soil treatments. Imidacloprid had higher residues in twigs; dinotefuran in needles. This difference affects the likelihood of adelgids actually ingesting the toxin.

healthy hemlock in experimental gap; Jefferson National Forest, VA; photo by Bud Mayfield, USFS

Bud Mayfield (USFS) reported on his study of silvicultural strategies to support healthier hemlocks. While hemlocks normally thrive in shade, it has been determined that sunlight assists small trees  reducing HWA sufficiently to counter the tree’s leaf-level stress. Small sapling hemlocks grown in sunlight fix more carbon and convert it to growth in shoots and trunk diameter.

Mayfield found promising immediate suppression of HWA in large gaps in Georgia and Tennessee. By the third year the saplings were still growing, although their faster growth had attracted more HWA. These findings were less clear farther north in central Virginia and western Maryland – Mayfield thinks because HWA pressure there is lower. However, managers must maintain the gaps by cutting rapidly-growing competing woody species. He plans to test this strategy farther north in Pennsylvania. He is still trying to determine the optimal size of the gap.


Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

FY 23 Funding of Tree Pest Projects

Phytophthora ramorum-infected rhododendron plant; photo by Jennifer Parke, Oregon State University

APHIS has released the list of projects funded under §7721 of the Plant Protection Act in Fiscal Year 2023.  Projects funded under the Plant Pest and Disease Management and Disaster Prevention Program (PPDMDPP) are intend to strengthen the nation’s infrastructure for pest detection and surveillance, identification, threat mitigation, and safeguard the nursery production system.

APHIS has allocated $62.975 M to fund 322 projects in 48 states, Guam, & Puerto Rico. ~ $13.5 M has been reserved for responding to pest and plant health emergencies throughout the year. USDA is funding ~70% of the more than 460 PPDMDPP proposals submitted.

Funding by Goal Area

  • 1A – Enhance Plant Pest/Disease Analysis                               $2,057,174
  • 1S – Enhance Plant Pest/Disease Survey                                 $14,375,000
  • 2 – Target Domestic Inspection Activities at Vulnerable Points              $6,356,964
  • 3 – Pest Identification and Detection Technology Enhancement            $5,295,125
  • 4 – Safeguard Nursery Production                                                                 $2,079,119
  • 5 – Outreach and Education                                                                            $4,131,333
  • 6 – Enhance Mitigation Capabilities                                                             $13,875,775

By my calculation (subject to error!), the total for projects on forest pests is ~$6.5 M – or a little over 10% of the total. The top recipient was survey and management of sudden oak death: ~$700,000 for research at NORS-DUC and NCSU plus detection efforts in nurseries of 14 states. Other well-funded efforts were surveys for bark beetles and forest pests (projects in 14 states); surveys for Asian defoliators (projects in 14 states); and outreach programs targetting the spotted lanternfly (10 states, plus surveys in California).

Three states (Iowa, Kentucky and Maryland) received funding for surveys targetting thousand cankers disease of walnut; two states (Kentucky and Maine) obtained funding for outreach about the risk associated with firewood. Funding for the Nature Conservancy’s “Don’t Move Firewood” campaign appears under the home state of its leader, Montana.

Massachusetts obtained funding for outreach re: Asian longhorned beetle. Ohio State received funding for developing a risk map for beech leaf disease.

Ten states received funding for no forest pest projects; I don’t know whether they sought funding for this purpose. These states are Arizona, Colorado, Florida, Hawai`i, Idaho, Minnesota, Nebraska, New Mexico, North Dakota, and Puerto Rico. The “National” funding category also contained no forest pest projects.

Looking at the overall funding level might give a somewhat skewed impression because several of the projects with total funding of ~ $500,000 are actually carried out by USDA agencies. These awards are listed under the state in which the USDA facility happens to be located. Nearly half this money ($213,000) goes to a project by an Agriculture Research Service unit in Delaware to study the efficacy of the biocontrol targetting emerald ash borer.  Another $105,588 is allocated to detection of the SOD pathogen (Phytophthora ramorum) in irrigation water, undertaken – I think – at the ARS quarantine facility in Frederick, Maryland. A smaller project at a USFS research facility in Connecticut is studying egg diapause in the spotted lanternfly. The Delaware ARS unit is also pursuing biological control of the red-necked longhorn beetle (RNB) Aromia bungi, which attacks primarily stone fruits. Native to China and other countries in Asia, RNB has been intercepted in wood packaging by the U.S. and Europe; it has become established in Italy and Japan [Kim Alan Hoelmer, ARS, pers. comm.] The APHIS lab in Massachusetts is developing a light trap for detection of the Asian spongy moths Lymantria dispar.

I am intrigued that two states (Mississippi and Nevada) are conducting “palm commodity” surveys. Palms are important components of the environment in some states – although I am not certain these are the two most important!

As you might remember, I am also interested in some invaders other than forest pests. Washington has obtained $998,000 to support two projects integral to its efforts to find and eradicate the Asian (or Northern) Giant hornet. Oregon has obtained funding to carry out a survey for these hornets.  

Cactus moth larvae feeding on prickly pear cactus; photo by Doug Beckers, via Flickr

I rejoice to see that the Florida Department of Agriculture continues efforts to deploy biocontrol agents targetting the cactus moth. The Agriculture Research Service is evaluating the establishment of biocontrol agents released to counter two highly invasive plants. Re: Brazilian peppertree, I don’t question the damage it has caused in southern Florida but I have grave concerns should the psyllid and thrips reach Hawai`i. I am most distressed to see that Hawaiian Division of Forestry and Wildlife and Department of Agriculture are actively pursuing deliberate introduction of the thrips. ARS is also searching for potential biocontrol agents targetting the invasive cogongrass (Imperata cylindrica). Penn State is working on registering a soil fungus native to North America, Verticillium nonalfalfae, as a biocontrol targetting the highly invasive tree of heaven (Ailanthus).  

Phragmites invading Merkle Wildlife Sanctuary, Upper Marlboro, Maryland; photo by Alicia Pimental, (c) Chesapeake Bay Foundation

APHIS is pursuing biocontrol for “Roseau” cane scale. This situation presents a conflict of geographic regions because the plant to be controlled is Phragmites australis. Phragmites is highly invasive in the Mid-Atlantic, Northeast, and Great Lakes states . On the Mississippi delta it is considered important in maintaining wetlands crucial to protecting the Louisiana coast from rising seas.

Finally, USDA is pursuing management tools to contain the Box Tree Moth – a threat to the most widely planted ornamental shrub.  

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Climate Change + CO2 Levels – Can Scientists Include the Complexity in their Analyses?

Spruce budworm (Choristoneura fumiferana); photo by Jerald E. Dewey, USFS; via Bugwood; populations of several forest birds, including Cape May, Tennessee and Bay-Breasted warblers, become more numerous during budworm outbreaks

Now that Drs. Ziska and Aucott have educated us about the strong impact atmospheric CO2 can have on both plants and phytopagous insects, I have asked the experts whether these interactions have been incorporated in the models scientists are using to forecast pest activity in American forests as the climate changes.

The answer is no.

bay-breasted warbler; photograph by Dave Inman at Presque Isle State Park, PA; via Flickr

Dr. Bethany A. Bradley, Co-Director, Northeast Climate Adaptation Science Center at the University of Massachusetts, says empirical models of species range shifts typically only use climate and sometimes other environmental factors (like soils or topography) as predictors of potential geography. Inclusion of demographic processes like how plant growth is affected by more or less water, CO2, competition with other plants etc. would require a lot of data. It is currently impossible since there are tens of thousands of plant species interacting in the forests of eastern North America – and perhaps these factors have been analysed for only a hundred of them.

Mike Aucott points to the same difficulty: inclusion of CO2 in models of the future populations of specific plants would be difficult since the impacts vary from species to species and are compounded by other factors such as soil nitrogen levels, moisture levels, temperature, presence of competing plants, etc.  

Regarding insects, Dr. Aucott thinks it is clear that some orders, such as Lepidoptera, don’t fare as well when feeding on plants grown under elevated CO2.  He is not aware of efforts to model impacts of high CO2 on specific insects or even orders or feeding guilds. 

juniper geometer (inchworm); Dr. Tallamy says inchworms are hairless & good tasting – so sought by birds

Dr. Ziska concurs about the difficulties. Dr. Ziska asks why there is so little funding to study these issues, especially given their probable impact on human food supplies and health – as described in his blog and an opinion piece published in Scientific American two years ago.

I hope that scientists, decision-makers, readers of this blog … maybe even the media! – take into consideration these complexities, even if they cannot be defined.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – [but do not address climate or CO2 aspects] review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org