APHIS funding of programs targetting tree pests (& some others)

spotted lanternfly; photograph by Holly Ragusa, Pennsylvania Department of Agriculture

Since Fiscal Year (FY)2009, APHIS has had access to a program that has permanent funding, not subject to the vagaries of annual budgeting and appropriations. The Plant Pest and Disease Management and Disaster Prevention Program established by 7 U.S.C. Section 7721. The program was initially funded at $12 million for FY2009; $45 million in FY2010; $62.5 million in 2014-2017; and $75 million since FY2018.

Funds are provided under a competitive grants program to universities, states, Federal agencies, nongovernmental organizations, non-profits, and Tribal organizations “to conduct critical projects that keep U.S. crops, nurseries, and forests healthy, boost the marketability of agricultural products within the country and abroad, and help us do right and feed everyone.” [USDA press release “USDA Provides $66 Million in Fiscal Year 2019 to Protect Agriculture and Natural Resources from Plant Pests and Diseases” February 15, 2019]

By my calculation, total funding of tree pests projects during the period Fiscal Year (FY09) through FY20 was about $94 million. This represented 15.6% of nearly $600 million in total funding under the program during this period.

In the initial years, forest pest projects received about 10-12% of total funds. In later years, the proportion has been higher – e.g., 30% in FY19, 13.8% in FY20. The early years were dominated by management of the sudden oak death pathogen (SOD), Phytophthora ramorum. In FY09, SOD projects receive $7.5 million, or 8% of all tree pest funding. This funding helped set up the National Ornamental Nursery study center (NORS-DUC); later years paid for research projects on SOD management issues and nursery surveys. 

In the most recent years, funding has been dominated by detection, management, and research on spotted lanternfly – which is not primarily a forest pest. Thus, in FY 19, 56.8% ($10,339,126) of $18,195,000 allocated to tree pests; in FY20, 30% ($2,606,094) of the $8,705,920 allocated to all tree pests.  

The FY2019 program also provided $1,107,965 in 14 states and nationally for P. ramorum survey, diagnostics, mitigation, probability modeling, genetic analysis, and outreach (USDA press release 2019). This was appropriate considering the shipment of SOD-infected plants to nurseries in 18 states in spring 2019.

Current Year Funding

APHIS has released the list of projects funded under the Plant Protection Act Section 7721 in FY2021. Link to website APHIS funded 354 projects in 49 states, Guam, Puerto Rico and the District of Columbia, at a total cost of $63.225 million. APHIS is retaining ~ $14 million to allow responses to pest and plant health emergencies. Total funding for forest pests – by my calculation – was $8,715,046 (13.7% of the total).

My analysis finds that in FY21, 13 states had no funded projects that applied to tree pests: Arizona, Colorado, District of Columbia, Guam, Hawaii, Idaho, Nebraska, New Jersey, New Mexico, North Dakota, Rhode Island, South Dakota, and Utah.

Most commonly funded projects:

  • Surveys and other efforts addressing wood borers: 37 projects, including
    • Thousand cankers disease: 4 (all surveys)
    • Emerald ash borer: 6 projects (surveys and management, including biocontrol)
    • Asian longhorned beetle: 3, of which 2 are outreach
    • Laurel wilt disease: 1 project
    • Detection tools for wood-borers, including citrus longhorned beetle, Sirex noctilio, Agrilus biguttatus, and Australian Cerambycids
  • Phytophthora ramorum: 20 projects, primarily nursery surveys but including a few management projects. The projects were in 18 states.
  • Surveys for Asian defoliating moths in the Lymantra genus: 15 projects
  • Surveys and control efforts targetting spotted lanternfly: 13 projects in 6 states. These included research conducted by the APHIS Otis laboratory in Massachusetts. The grants totaled $2,788,010, or 32% of total forest pest funding.

APHIS funded 16 outreach projects (there is some overlap with above), including three specifically mentioning firewood. The latter included principal funding for the “Don’t Move firewood” national campaign.

Other projects that I find interesting:

  • 2 projects targetting hemlock woolly adelgid
  • 1 targetting red palm weevil
  • 4 projects targetting Asian giant hornet in Washington and Oregon and the APHIS Otis laboratory. California has a project relating to a wider range of hornets that was also funded in FY20.
  • Biocontrol of several invasive plant species in Florida – Australian pine/Casuarina, Brazilian pepper, and Ailanthus
Harrisia cactus attacked by the mealybug; photo by Yorelyz Rodríguez-Reyes

As readers of this blog know, I also care deeply about threats to our native cacti – especially flat-padded Opuntia and tubular cacti endemic to Puerto Rico. Over the 13 years of program, funded following projects for cacti:

  • FY11  $244,368 for efforts to develop sterile insect methodology to control cactus moth
  • FY17   develop biocontrol for Harissia cactus mealybug $210,000
  • FY19   Harissia cactus mealybug – $355,774; cactus moth $216,243
  • FY20   Harrisia cactus mealybug $301,930
  • FY 21 cactus moth biocontrol $175,659 and $352,236 for Harrisia cactus mealybug biocontrol

Clearly, having access to $75 million that is not subject to the limits imposed by Administration budget priorities or Congressional appropriations has allowed considerable freedom. The fund has allowed APHIS to support work on pests that have not been designated “quarantine pests,” e.g., walnut canker disease of walnut, the polyphagous and Kuroshio shot hole borers, hemlock woolly adelgid, and the cactus pests. The program also funded many projects targetting the spotted lanternfly (SLF) – both before and after the lanternfly became a formal APHIS program (which occurred after it was detected outside Pennsylvania). Now that SLF has been found in several states, funding has partially shifted to appropriated funds. The FY21 appropriation included an additional $4 million for management of SLF; this was incorporated in the “specialty crops” line item.

So far, there has been no funding for beech leaf disease through this program; I don’t know whether any of the people working on this disease had applied.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

APHIS Deregulates Emerald Ash Borer – Now it is up to the States

APHIS formally proposed to stop regulating movement of firewood, nursery stock, and other articles that can transport the emerald ash borer (EAB) in 2018; I blogged in opposition to this proposal at the time.  Now APHIS has evaluated the 2018 comments on its proposal and has decided to proceed with its plans.

I recently blogged about the current and probable future status of ash. A study confirmed that robust regeneration of ash seedlings and saplings seen in various invaded areas will not result in recovery of mature ashes that can perform their ecological role. 

APHIS received 146 comments on the proposal. Twenty-five supported the proposal as written; 121 raised concerns. Many of the latter were a few sentences without supporting information. These comments and the final rulemaking can be read here.

How has APHIS responded to the serious questions raised? Dismissively.

I certainly concede that EAB has been difficult to manage and has spread rapidly. However, I continue tobelieve that maintaining the quarantine serves important purposes and the analysis APHIS provides does not justify terminating of the regulatory program. I remain concerned.

Neither the proposal nor the final regulation tells us how much money and staff resources have been dedicated to detection or enforcement of the regulations in recent years. Therefore we don’t know how many resources are now available for supporting other activities that the agency thinks are more effective. APHIS also refuses to provide specific information on how it will allocate the freed-up resources among its (minimal) continuing efforts. For example, APHIS has supported resistance-breeding programs. Will it help them expand to additional species, e.g., black and Oregon ash?

How Does APHIS Propose to Curtail EAB Spread?

APHIS states in the final rule that it is ending the domestic quarantine regulation so that it can allocate resources to more effective strategies for managing and containing EAB. The agency wants to reallocate funds “to activities of greater long-term benefit to slowing the spread of EAB … These activities include further development and deployment of EAB biocontrol organisms; further research into integrated pest management of EAB that can be used at the local level to protect an ash population of significant importance to a community; and further research, in tandem with other Federal agencies, into the phenomenon of “lingering ash … ”

However, APHIS has not funded detection efforts since 2019. (Detection methods were only partially effective, but they gave us some information on where EAB had established.) APHIS is now ending regulation of the movement of vectors. APHIS concedes that biocontrol agents cannot be effective in preventing pest spread. So – what efforts – other than continued support for the “Don’t Move Firewood” campaign – will APHIS make to slow the spread of EAB?

Environmental and Economic Impacts: Not Adequately Assessed

Second, APHIS still has not analyzed the economic or environmental impact of the more rapid spread of EAB to the large areas of the country that are not yet infested – especially the West Coast – that are likely to result from deregulation. As even APHIS concedes, the EAB is currently known to occupy only 27% of the range of native Fraxinus species within conterminous US. There are additional large ash populations in Canada and Mexico – although neither country commented on the proposal — unfortunately!

Instead, APHIS largely restates its position from the proposal that it is too difficult to calculate such impacts. Furthermore, that it is APHIS’ “experience that widely prevalent plant pests tend, over time, to spread throughout the geographical range of their hosts …” In other words, APHIS denies the value of delaying invasions – yet that has always been a premise underlying any quarantine program.

The final regulation refers to an updated economic analysis, but no such document is posted on the official website. The rule does not mention costs to homeowners, property owners, municipal governments, etc. I believe it would not be so difficult to estimate costs to these entities by applying costs of tree removal in the Midwest to tree census data from major West Coast cities. Also, it might have been possible to provide some estimate of the ecological values in riparian forests by analogy to data from the Midwest developed by Deborah McCullough and others.

Biological Control: Effective – or Not

In the final regulation, APHIS concedes that the biocontrol agents currently being released have geographic and other limitations. However, APHIS does not address concerns raised by me and others about their efficacy. APHIS does say explicitly that it has not [yet?] begun efforts to find biocontrol agents that might be more effective in warmer parts of the ash range, especially the Pacific Northwest and  riparian areas of the desert Southwest. However, APHIS has conceded that these areas are almost certain to be invaded – so should it not take precautionary action?  

APHIS states several times that it cannot promise specific funding allocations among program components or strategies – such as resistance breeding – that might be pursued in the future. The agency stresses the value of flexibility.

U.S. Forest Service biologists have higher expectations; see their podcast here.

I wish to clarify that I do not oppose use of biocontrol; I strongly supported then APHIS Deputy Administrator Ric Dunkle’s decision to initiate biocontrol efforts for EAB early in the infestation. My objections are to overly optimistic descriptions of the program’s efficacy.

Firewood: Outreach Only, No National Regulation

As noted, APHIS has promised to continue support for public outreach activities, especially the “Don ‘t Move Firewood” campaign. The program’s message will continue to encourage the public to buy firewood where they burn it and to refrain from moving firewood from areas that are under Federal quarantine for other pests of firewood (e.g., Asian longhorned beetle). This campaign and the new National Plant Board guidelines link stress that firewood is a high-risk pathway for many pests of national or regional concern; they do not focus on any particular species. Leigh Greenwood, director of Don’t Move Firewood, thinks this is a good approach.

In 2010, the National Firewood Task Force recommended that APHIS regulate firewood at the national level. APHIS does explain why the agency did not do so. The agency says national regulations would be overly restrictive for some states and that requiring heat treatment would not be feasible in the winter for producers in Northern states. Finally, a Federal regulation would not address a significant non-commercial pathway – campers. [I have serious questions about APHIS’ assertion that it can regulate only commercial movement of vectors across state lines. Contact me directly for details on this.]

Perhaps APHIS is not required to analyze the probable overarching efficacy of the several efforts of 50 states. Given the states’ many perspectives and obvious difficulty in coordinating their actions on phytosanitary and other policies, I fear a scattered approach that will result in faster spread of EAB. I hope the National Plant Board guidelines on firewood regulation and outreach can overcome the history.

Most federally-managed recreation areas adopted an education campaign on firewood in autumn 2016; I blogged about it then.

Imported Wood Will be Minimally Regulated

APHIS clarifies that it will take enforcement actions against imports of ash wood only if inspectors detect larvae but can identify them just to family level and not below. APHIS will allow the importation if the larvae can be identified as EAB specifically. This policy reflects international standards, which do not allow a country to erect restrictions targetting a pest from abroad if that pest is also present inside the country and is not under an official control program. (See my discussion of the WTO Agreement on Sanitary and Phytosanitary Standards in Chapter 3 and Appendix 3 of Fading Forests II, available here.) 

APHIS does not discuss how it will react to pests identified to the genus – several other Agrilus also pose pest risks. (See here and here.)

APHIS recommends that states leery of accepting yet more EAB-infested wood from abroad petition the agency under the Federally Recognized State Managed Phytosanitary Program (FRSMP) program, under which APHIS would take action to prevent movement of infested material to that particular state.

Lessons Learned

Finally, one commenter asked whether APHIS would analyze the program to learn what could have improved results. APHIS replies that the agency “tend[s] to reserve such evaluations for particular procedures or policies in order to limit their scope …” I hope APHIS is serious about “considering” doing a “lessons learned” evaluation. It is important to understand what could have been done better to protect America’s plant resources.

My take: the EAB experience proves, once again, that quarantine zones must extent to probable locations – beyond the known locations. The pest is almost always more widely distributed than documented. This has been true for EAB, sudden oak death, ALB, citrus canker … Failure to regulate “ahead” of the pest guarantees failure. I recognize that adopting this stance probably requires a change in the law (or at least understanding of it) and of current international standards adopted by the International Plant Protection Convention (IPPC). However, absent a more aggressive approach, programs are doomed to be constantly chasing the pest’s posterior.

Finally, let us mourn the loss of ash so far, the future losses … and opportunities missed.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Money for Key Programs in FY2021 – 1st Round

Congress has begun work on funding the government for Fiscal Year 2021, which begins on 1 October 2020.

The House Appropriations Committee has adopted bills funding USDA APHIS (via the agriculture appropriations bill) and USDA Forest Service (via the interior appropriations bill). Both provide steady or increased funding for programs important to preventing, eradicating, containing, and managing non-native tree-killing pests.

However, the Senate must act also – and I don’t yet know whether it will support these spending increases — or even whether it will pass an appropriations bill.

Still – we should applaud members of the House Agriculture and Interior subcommittees for supporting these programs (go here to see if your representative is on the committees). The same link provides justifications for funding the various programs.

USDA APHIS funding for key programs

Program                    FY2020           Admin’s Request         FY2021

APHIS Plant Protection           

Ag Quarantine (appropriated)     32,330,000     33,350,000                 33,070,000

Pest detection       27,446,000      27,967,000                  37,824,000

Methods develop    20,686,000      21,045,000                  20,946,000

Specialty crops          192,013,000    183,079,000                198,912,000

Tree & wood pests        60,000,000      56,336,000                  60,600,000

In its report, the Appropriations Committee reiterated its longstanding instruction that the Secretary of Agriculture tap funds in the Commodity Credit Corporation to fund emergency actions to “arrest and eradicate” plant pests. The report also called for APHIS to maintain funding levels and cost-share requirements for addressing the Asian longhorned beetle. (I expect emergency funds will be needed to address the newly detected ALB outbreak in South Carolina.) The Committee noted that it had provided $4 million in additional funds to counter the spotted lanternfly  outbreak.

In addition, the Committee instructed APHIS to work with the USDA Forest Service, National Institute of Food and Agriculture, and Climate Hub to assist U.S. tropical areas (Hawai`i, Puerto Rico, US Virgin Islands, Guam, Marianas) to address several issues, including:  

  • Land  and forest resource management; and
  • Biology and control of invasive insects, plant diseases, weeds and integrated pest management strategies;

Forest Service – funding for key programs

Program                FY2020                       Pres’ request                FY2021

Research &

Development     $305,000,000              $249,330,000              $311,830,000

State & Private

Forestry overall       $346,990,000              $217,443,000              $300,296,000

Forest Health

Management          $100,000,000              $84,636,000                $101,136,000

In its report, the Appropriations Committee said that it expected the USFS to develop a research program that reflects the committee’s priorities and other activities most critical to forest health, especially addressing climate change adaptation, preventing spread of disease and invasive species, and watershed improvement. The Committee also supported research on holistic approaches to countering the harmful effects of terrestrial invasive species, utilizing a coordinated approach that incorporates expertise in forestry, veterinary science, aerospace engineering, biotechnology, agronomy and applied economics.

Addressing the Forest Health Management program, the Committee report encouraged the USFS to address high priority invaders, including the emerald ash borer and native western bark beetles.

The bill also rejected the President’s proposal to eliminate the Urban and Community Forestry program. Instead, it provided $8 million above the FY2020 level (that is, $40 million); this total includes $2 million allocated to helping communities hard-hit by the emerald ash borer to replant their urban forests.

Now that the House has acted, the next step – usually – is for the Senate Agriculture and Interior appropriations subcommittees to mark up their own bills. However, those who follow Congress closely don’t expect the Senators to be able to reach agreement on spending levels. Instead, they expect, the Senate will pass a “continuing resolution” that maintains current funding levels for the various programs. Perhaps after the election, they might then adopt more detailed bills.

Please – if one of your Senators is on either of these subcommitees (see the lists here), ask him or her to support the House spending levels on these programs.

I have written extensive descriptions of the impact of funding inadequacies in Fading Forest III, available here.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies, practices, and funding shortfalls that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Hope for eastern hemlocks – IF funding can be obtained

eastern hemlocks in Great Smoky Mountains National Park

As we all know, eastern (Tsuga canadensis) and Carolina (T. caroliniana) hemlocks have suffered huge losses due primarily to the introduced hemlock woolly adelgid (Adelges tsugae – HWA). In New England, there has been more than a 60% decrease in total hemlock basal area since 1997 and a virtual absence of hemlock regeneration in HWA-infested areas. HWA continues to spread – most recently into western Michigan and Nova Scotia (all information, unless otherwise indicated, is from Kinahan et al. 2020; full citation at end of this blog). [However, Morin and Liebhold (2015) found that hemlock basal volume continued to increase for the first 20 years or so after invasion by the adelgid, due to ingrowth of immature hemlocks. See “results” in Morin et al., full citation at the end of the blog.]

This loss deprives us of a gorgeous tree … and unique habitats. Hemlock-dominated forests were characterized by deep shade, acidic and slowly decomposing soil, and a cool microclimate. They provided unique and critical habitat for many terrestrial and aquatic species.

A team of scientists based at the University of Rhode Island has carried out an experiment comparing cuttings from eastern hemlocks apparently resistant to HWA to susceptible ones. Matching sets of resistant and susceptible trees were planted at eight sites in seven states – Ithaca and Bronx, NY; Boston; southern CT; Lycoming County, PA; Thurmont, MD; southern WV; and Waynesville, NC. All plantings were within or adjacent to forests containing HWA-infested hemlocks.

After four years, 96% of the HWA-resistant hemlocks had survived, compared to 48% of the control plants. The HWA-resistant plants were 32% taller, put out 18% more lateral growth, had 20% longer drip lines, and were in 58% better condition. HWA was found on trees at only three out of the eight plots. HWA density on resistant eastern hemlocks was 35% lower than on HWA-susceptible hemlocks, although this difference was not statistically significant.

Trees in all eight plots were infested with elongate hemlock scale (Fiorinia externa – EHS), a second insect damaging hemlocks in eastern North America. However, the HWA-resistant hemlocks had EHS densities 60% lower than those of the controls.

Kinahan et al. note that identification and use of host tree populations’ potential for pest resistance has played a role in other programs managing non-native pests and pathogens, including Dutch elm disease and chestnut blight.  

The same scientists note that significant effort has been put into biocontrol or insecticides for management of hemlock woolly adelgid, but without achieving the desired improvement of forest health. Attempts to cross eastern hemlocks with HWA-resistant hemlocks unfortunately produced no viable offspring. However, Kinahan et al. were inspired to explore possible genetic resistance within natural populations of eastern hemlocks by the 1) evidence of resistance in Asian and western hemlocks; 2) the different foliar terpene profiles in those species; and 3) the presence of apparently healthy mature hemlock trees growing in proximity to heavily infested trees.

They asked forest managers and other concerned groups to help locate stands with trees that were mature and apparently completely healthy, were located within HWA-devastated hemlock stands, and had not been chemically treated. They chose a small stand of eastern hemlocks growing within the Walpack Fish and Wildlife Management Area in northern New Jersey. This stand was called the “Bulletproof Stand”. They evaluated HWA resistance in five of these trees, then chose two for propagation and planting in the test.

New Jersey’s “bullet-proof stand” on the left
photo by Richard Casagrande

The trees were planted in September 2015. Due to funding gaps, they were not revisited for four years. Thus, Kinahan et al. re-evaluated the resistant and vulnerable trees in Autumn 2019 – with the results I reported above.

Does this study prove that clonal propagation of apparently resistant hemlocks is an effective strategy to restore the species?

It is not that simple.

The difference in survival and condition was striking, but the authors note several caveats:

1) they had not recorded pre-experiment data on plant height or other variables, so they cannot be certain that variation in initial plant height or dripline did not contribute to current treatment-level differences in these variables.

2) they cannot distinguish between the impacts of HWA and EHS on plant growth.

3) since they could not monitor the planting sites for four years, they cannot definitively link increased mortality of HWA-susceptible trees to higher pest densities. However, the lower pest densities and higher survival of HWA-resistant hemlocks are consistent with herbivore-driven tree mortality.

They also cannot assess the impact of other environmental stressors (drought, cold, etc.) on their results.

4) The small number of trees planted at each site prevented detailed site-level analyses.

The scientists conclude that their work is most appropriately viewed as a ‘proof of concept’ experiment highlighting the need for future research exploring how HWA-resistant eastern hemlocks might best be integrated into existing HWA management.

Unfortunately, the Rhode Island researchers report they cannot persuade the US Forest Service to support continuing this effort. Will these promising hints not result in action?

Kinahan et al. stress the importance of the reduced pest densities (both HWA and EHS) on the putatively resistant hemlocks. They think this might be a result of the higher terpene concentrations in the twigs and needles. Finally, they note that lower densities of sap-feeding herbivores may also indirectly provide protection against other consumers, including gypsy moth (Lymantria dispar) and hemlock looper (Lambdina fiscellaria).

SOURCE

Kinahan, I.G., G. Grandstaff, A. Russell, C.M. Rigsby, R.A. Casagrande, and E. L. Preisser. 2020. A four-year, seven-state reforestation trial with eastern hemlocks (Tsuga canadensis) resistant to hemlock woolly adelgid (Adelges tsugae). Forests 11: 312

Morin, R.S. and A.M. Liebhold. 2015. Invasions by two non-native insects alter regional forest species composition and successional trajectories. Forest Ecology and Management 341 (2015).

Posted by Faith Campbell

P.S. I have been working with colleagues to promote a more coordinated and well-funded program to combat non-native forest pests – including much greater reliance on identifying and breeding resistance to the pest. Visit here to see this effort.

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

Progress – Now Threatened – On Protecting Our Cacti

prickly pear cacti in Big Bend National Park
photo by Blake Trester, National Park Service

The cacti that are such important components of desert ecosystems across nearly 2 million square miles straddling the U.S.-Mexico border are under threat from non-native insects – as I have noted in earlier blogs. Of course, cacti are important in other ecoregions, too – I wrote recently about the columnar cacti in the dry forests of Puerto Rico.

Flat-padded prickly pear cacti of the genus Opuntia are threatened by the cactus moth, Cactoblastis cactorum.

In 1989, the cactus moth was found in southern Florida, to which it had spread from the Caribbean islands (Simonson 2005). Recently, the moth was found to have spread west as far as the Galveston, Texas, area and near I-10 in Columbus, Texas, about 75 miles west of central Houston (Stephen Hight, pers. com.) Two small outbreaks on islands off Mexico’s Caribbean coast have been eradicated.

In Florida, the cactus moth has caused considerable harm to six native species of prickly pear, three of which are listed by the state as threatened or endangered.

When the cactus moth reaches the more arid regions of Texas, it is likely to spread throughout the desert Southwest and into Mexico. In the American southwest, 31 Opuntia species are at risk; nine of them are endemic, one is endangered. Mexico is the center of endemism for the Opuntia genus. In Mexico, 54 Opuntia species are at risk, 38 of which are endemic (Varone et al. 2019; full citation at end of this blog).

The long-term effects of the cactus moth on these North American Opuntia are unknown because there may be substantial variations in tolerance. The attacks observed in the Caribbean islands have shown great variability in various cactus species’ vulnerability (Varone et al. 2019).

The Opuntia cacti support a diversity of pollinators as well as deer, javalina (peccaries), tortoises, and lizards. Prickly pears also shelter packrats and nesting birds (which in turn are fed on by raptors, coyotes, and snakes), and plant seedlings. Their roots hold highly erodible soils in place (Simonson 2005).

While scientists have been concerned about the possible impacts of the cactus moth since it was detected in Florida 30 years ago, a substantial response began only 15 years later. The U.S. Department of Agriculture began trying to slow the spread of the cactus moth in 2005 (Mengoni Goñalons et al. 2014), with a focus on surveys and monitoring, host (cactus) removal, and release of sterile males. This program was successful at slowing the moth’s spread and eradicating small outbreaks on offshore islands of Alabama, Mississippi, and Mexico.

Cactus moth damage to native cacti in Florida
photo by Christine Miller, UF/IFAS

However, the moth continued to spread west and the program never received an appropriation from Congress. The primary funding source was a US – Mexico Bi-National Invasive Cactus Moth Abatement Program. Both countries contributed funds to support the research and operational program to slow the spread in the U.S. Funds were provided through USDA Animal and Plant Health and Inspection Service (APHIS) and the Mexican Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SEGARPA). Unfortunately, funding was reduced by both entities and became inadequate to maintain the Bi-National Program.

Therefore, in 2012, APHIS abandoned its regional program and shifted the focus to biocontrol. This is now considered the only viable control measure in the desert Southwest where vulnerable cacti are numerous and grow close together. The biocontrol project has been funded since 2012 through the Plant Pest and Disease Management and Disaster Prevention program (which receives funding through the Farm Bill). It has received a total of slightly more than $2 million over seven years. More than half the funds went to the quarantine facility to support efforts to rear non-target hosts and verify the biocontrol agent’s host specificity. About a quarter of the funds supported complementary work of an Argentine team (both the cactus moth and the most promising biocontrol agent are native to Argentina). Much smaller amounts have supported U.S.-based scientists who have studied other aspects of the cactus moth’s behavior and collected and identified the U.S. moths being tested for their possible vulnerability to attack by a biocontrol wasp.

Here are details of what these dedicated scientists achieved in just the past seven years at the relatively low cost of roughly $2 million. Unfortunately, the project now faces a funding crisis and we need to ensure they have the resources to finish their work.

Some Specifics of the BioControl Program

After literature reviews, extensive collections, and studies in the cactus moth’s native habitat in Argentina (Varone et al. 2015), a newly described wasp, Apanteles opuntiarum (Mengoni Goñalons et al. 2014), has been determined to be host specific on Argentine Cactoblastis species and the most promising candidate for biocontrol. Wasps were collected in Argentina and sent to establish a colony in a quarantine facility in Florida to enable host specificity studies on North American Lepidoptera (Varone et al. 2015).

Quarantine host specificity studies and development of rearing technology has not been straightforward. Initially, it was difficult to achieve a balanced male/female ratio in the laboratory-bred generations; this balance is required to maintain stable quarantine laboratory colonies for host range testing. This difficulty was overcome. A second challenge was high mortality of the cactus-feeding insects collected in the Southwest that were to be test for vulnerability to the biocontrol wasp. These desert-dwellers don’t do well in the humid, air-conditioned climate of the quarantine facility! For these difficult-to-rear native insects, scientists developed a molecular genetics method to detect whether eggs or larvae of the cactus moth parasitoid were present inside test caterpillars after they were exposed to the wasps. For easy to rear test insects, caterpillars are exposed to the wasps and reared to adulthood. Host specificity tests have been conducted on at least five species of native U.S. cactus-feeding caterpillars and 11 species of non-cactus-feeding caterpillars (Srivastava  et al. 2019; Hight pers.comm.).

To date there has been no instance of parasitism by Apanteles opuntiarum on either lepidopteran non-target species or non-cactus-feeding insects in the Florida quarantine or in field collections in Argentina (Srivastava et al. 2019; Varone et al. 2015; Hight pers.comm.).

The scientists expected to complete host-specificity testing in the coming months, then submit a petition to APHIS requesting the release of the wasp as a biocontrol agent. Unfortunately, the project’s request for about $250,000 in the current year was not funded. This money would have funded completion of the host specificity testing, preparation of a petition to APHIS in support of release of the biocontrol agent into the environment, and preparation of the release plan.

Meanwhile, what can we expect regarding the probable efficacy of the anticipated biocontrol program?

Some of the wasp’s behavioral traits are encouraging. The wasp is widely present in the range of the cactus moth, and persisted in these areas over the years of the study. The wasp can deposit multiple eggs with each “sting”. Multiple wasps can oviposit into each cactus moth without detriment to the wasp offspring. Unmated wasp females produce male offspring only, whereas mated females produce mixed offspring genders. In the field, female wasps attack cactus moth larvae in a variety of scenarios: they wait at plant access holes to sting larvae when they come outside to defecate; they attack larvae when they are moving on the surface of the pads; they can sting the youngest cactus moth larvae through the thin plant wall of mined the pads; and they enter large access holes created by older larvae and attack larger larvae. The wasps are attracted by the frass (excrement) left on the outside of the cactus pads by cactus moth larvae (Varone et al. 2020).

However, I wonder about the extent to which the cactus moth is controlled by parasitoids in Argentina. Cactoblastis eggs are killed primarily by being dislodged during weather events (rain and wind) and by predation by ants. First instar larvae are killed primarily by the native Argentine cactus plants’ own defenses – thick cuticles and release of sticky mucilage when the young larvae chew holes into the pads where they enter and feed internally. As larvae feed and develop inside the pads, the primary cause of mortality is natural enemies.

Of all the parasitoid species that attack C. cactorum, A. opuntiarum is the most abundant and important. When the larvae reach their final state (6th instars), they leave the pads and find pupation sites in plant litter near the base of the plants. It is at this stage that the parasitism from A. opuntiarum is detected in the younger larvae that were attacked while feeding inside pads. As the moth larva begins to spin silk into which to pupate, larvae of the wasp erupt through the skin of the caterpillar and pupate within the silk spun by the moth. Predation by generalists (ants, spiders, predatory beetles) accounted for high mortality of the unprotected last instar and pupae (Varone et al. 2019).

Finally, the cactus moth has three generations per year when feeding on O. stricta in the subtropical and tropical coastal areas of the Americas and the Caribbean. In Argentina, on its native host, the moth completes only two generations per year (Varone et al. 2019).

 How to Get the Program Support Needed

Opuntia in Big Bend National Park
Photo by Cookie Ballou,
National Park Service

To date, no organized constituency has advocated for protection of our cacti from non-native insect pests. Perhaps now that the Cactoblastis moth is in Texas, the threat it represents to our desert ecosystems will become real to conservationists and they will join the struggle. The first step is to resolve the funding crisis so that the agencies can complete testing of the biocontrol agent and gain approval for its release. So now there is “something people can do” – and I hope they will step forward.

I hope Americans are not actually indifferent to the threat that many cacti in our deserts will be killed by non-native insects. Many are key components of the ecosystems within premier National Parks, and other protected areas. Cacti also are beautiful treasures in botanical gardens. I hope conservationists will agree that these threats must be countered, and will help to ensure funding of the final stages of the biocontrol tests.

Sources

Mengoni Goñalons, C., L. Varone, G. Logarzo, M. Guala, M. Rodriguero, S.D. Hight, and J.E. Carpenter. 2014. Geographical range & lab studies on Apanteles opuntiarum (hymenoptera: braconiDae) in AR, a candidate for BC of Cactoblastis cactorum (Lepidoptera: Pyralidae) in North America. Florida Entomologist 97(4) December 2014

Simonson, S.E., T. J. Stohlgren, L. Tyler, W. Gregg, R. Muir, and L. Garrett. 2005. Preliminary assessment of the potential impacts and risks of the invasive cactus moth, Cactoblastis cactorum Berg, in the U.S. and Mexico. Final Report to the International Atomic Energy Agency, April 25, 2005 © IAEA 2005

Srivastava, M., P. Srivastava,  R. Karan, A. Jeyaprakash, L. Whilby, E. Rohrig, A.C. Howe,  S.D. Hight, and L. Varone. 2019. Molecular detection method developed to track the koinobiont larval parasitoid Apanteles opuntiarum (Hymenoptera: Braconidae) imported from Argentina to control Cactoblastis cactorum (Lepidoptera: Pyralidae). Florida Entomologist 102(2): 329-335.

Varone, L., C.M. Goñalons, A.C. Faltlhauser, M.E. Guala, D. Wolaver, M. Srivastava, and S.D. Hight. 2020. Effect of rearing Cactoblastis cactorum on an artificial diet on the behavior of Apanteles opuntiarum. Applied Entomology DOI: 10.1111/jen.12731.

Varone, L., G. Logarzo, J.J. Martínez, F. Navarro, J.E. Carpenter, and S.D. Hight. 2015. Field host range of Apanteles opuntiarum (Hymenoptera: Braconidae) in Argentina, a potential biocontrol agent of Cactoblastis cactorum (Lepidoptera: Pyralidae) in North America. Florida Entomologist — Volume 98, No. 2 803

Varone, L., M.B. Aguirre, E. Lobos, D. Ruiz Pérez, S.D. Hight, F. Palottini, M. Guala, G.A. Logarzo. 2019. Causes of mortality at different stages of Cactoblastis cactorum in the native range. BioControl (2019) 64:249–261

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

2021 Funding: Crisis for USFS, OK for APHIS – Both Need Your Support

As happens every year, the Administration has proposed a budget for funding government programs in the next Fiscal Year (FY) – which begins on October 1, 2020 (FY2021). This proposal is not the final word. Congress will pass appropriations bills that will specify actual funding levels. NOW is the time for you to tell senators and representatives in Congress how much money you think agencies need to count tree-killing pests next year.

Pest programs most affected:

  • Sudden oak death (SOD):
  • Combination of goldspotted oak borer, laurel wilt, and thousand cankers disease
  • Port-Orford cedar root disease
  • Threats to whitebark pines
  • emerald ash borer

USDA Forest Service (USFS)

For the USFS, the Administration proposes alarming cuts.

Forest and Rangeland Research Program

FY18                           F719                FY20               FY21 proposed

297,000,000                300,000,000    305,000,000    249,330,000

[In FYs 18 – 20, Forest Inventory & Analysis received $77 million of this total; the proposal for FY21 is $78.5 million. Under this proposal, inventory would receive more than 30% of all research funding!]

The Administration proposes to cut USFS R&D overall by 25%. Also, it calls for closing the Pacific Southwest Research Station in California.

These proposed cuts would come on top of severe reductions over the past decade. Although the appropriation does not provide specific spending figures for invasive species, funding for research conducted by the seven research stations on ten non-native pests decreased from $10 million in FY2010 to just $2.5 million in FY2020 – a cut of more than 70%. The Service’s ability to develop effective tools to manage the growing number of pests threatening the health of the Nation’s forests is already crippled by the earlier cuts.

The proposal to close the Pacific Southwest Research Station is particularly unwise. This Station provides USFS’s crucially important expertise on both sudden oak death (SOD) and threats to Hawaiian forests, including rapid ʻōhiʻa death (ROD). These pathogens are already causing widespread and severe damage to forests in the region and leading experts work here.

USFS R&D must address two new threats associated with sudden oak death:

  1. need to better understand the possible impacts of the second, apparently more aggressive, genetic strain of the SOD pathogen now present in Oregon’s forests.
  2. studies to determine which of the newly detected Phytophthora species found in Southeast Asia Link to blog and other regions might cause significant damage to America’s trees.  

Other programs that USFS R&D should continue or expand:

  • study the possible threat posed by the ambrosia beetle recently detected in Napa Valley of California.
  • understand the epidemiology and probable impacts of the recently detected beech leaf disease present from Ohio to Connecticut and possibly more widespread.

Forest Health Management Programs 

Recent funding levels:

FY18                           F719                            FY20               FY21 proposed

96,500,000                  98,000,000                  100,000,000    73,636,000

The Forest Health Management (FHP) Program supports federal agencies’ and partners’ efforts to prevent, monitor, suppress, and eradicate insects, diseases, and invasive plants. The White House proposes a $23 million cut, including a cut of $10 million to programs working on “cooperative lands” – all areas other than federal lands. This proposed cut is short-sighted and worrisome. First, these forests support a wide range of forest values. Second, non-native pests usually are usually first introduced in cities or suburbs – because they accompany imports destined for population centers. These newly arrived pests initially cause enormous damage to urban forests. Counter-measures need to be initiated where and when the pests arrive and their populations are low. We cannot afford to wait for them to spread to national forest lands, when management will be harder and more expensive.

Despite ever-rising numbers of non-native forest pests over the past decade, funding for FHP work on Cooperative Lands has fallen by about 50%. Pest species suffering the largest cuts in recent FHP budgets are the combination of gold spotted oak borer, thousand cankers disease, and laurel wilt; Port-Orford cedar root disease, and threats to whitebark pines.

As I reported in a previous blog, an estimated 41% of forest biomass in the “lower 48” states is at risk from the 15 non-native pest species causing the greatest damage. Nevertheless, the Administration proposes to eliminate programs for several of the most hard-hit host tree species (redbay/laurel wilt, Port-Orford cedar, and whitebark pine) in FY2021. This proposal is contrary to priorities recommended through the CAPTURE project, which called for enhanced conservation efforts targetting these species specifically.

Also alarming is the cut to the informal “emerging pest” account. This valuable program funds projects targetting newly detected threats. Thus, in FY2019, FHP provided $125,000 to evaluate the probable impact of laurel wilt disease on sassafras, an important understory tree that grows throughout most of the Eastern Deciduous Forest. The program provided another $116,000 to support efforts to detect and understand beech leaf disease. Already, cuts in the overall FHP budget have necessitated cutting this valuable account  from $1 million in FY19 to $750,000 in FY20 – and will probably result in additional cuts  in FY21.

The budget proposes to cut funding to counter sudden oak death (SOD) Link to DMF by 15% — on top of a 52% cut since FY2018. SOD has killed an estimated 50 million trees from southern Oregon to central California. Not only does the pathogen continue to spread. Establishment of a second, more aggressive, genetic strain of the pathogen in the Oregon forest threatens to exacerbate the pathogen’s impact.

The forests of Hawai`i are facing their gravest threat ever from a growing number of pests. FHP supported detection/monitoring of the thrips attacking a dry forest tree, naio. There is a continuing need to address threats to Hawaii’s most widespread tree, ʻōhiʻa lehua – which makes up 80% of  native forests –  from the introduced “rapid ʻōhiʻa death” fungi.

Finally, stakeholders will depend on leadership by the FHP program to manage spread of the emerald ash borer if the USDA Animal and Plant Health Inspection Service acts as expected and terminates the program under which it regulates movement of firewood, nursery stock, and other items that spread this pest. California and Oregon and other Western states are at greatest risk.

What You Can Do

Senators and representatives serving on the two Interior Appropriations subcommittees will determine the final funding for USFS programs.  

Please ask them to support $303 million for USFS Research and Development. Since the budget does not specify funding levels to be allocated to non-native insects, pathogens, or other invasive species, ask for “report language” instructing USFS to increase the funding for this vital research area to five percent of the total research budget. Ask them also to support maintaining the Pacific Southwest Research Station.

Also, ask them to support maintaining USFS Forest Health and Management Programs at the FY20 level of $100 million in FY21. Ask them to support $44 million for the “cooperative lands” program.

Members of the House Interior Appropriations subcommittee

  • Betty McCollum, Chair                        MN
  • Chellie Pingree                         ME
  • Derek Kilmer                           WA
  • José Serrano                            NY
  • Mike Quigley                           IL
  • Bonnie Watson Coleman         NJ
  • Brenda Lawrence                     MI
  •  
  • David Joyce, Ranking Member            OH
  • Mike Simpson                          ID
  • Chris Stewart                           UT
  • Mark Amodei                          NV

Members of the Senate Interior Appropriations subcommittee

USDA Animal and Plant Health Inspection Service (APHIS)

Again, while the tree-killing pests are usually introduced first in cities or suburbs, the pests don’t stay there. Instead, they proliferate and spread … eventually threatening forests across the continent.  

APHIS has legal responsibility for preventing such pests’ entry, detecting newly introduced pests, and initiating eradication and containment programs intended to minimize the damage they cause. The risk of new introductions is tied to international trade. In 2017, an estimated 17,650 shipping containers (or 48 per day) infested by wood-boring insects entered the United States. Examples of such introductions include the Asian longhorned beetle, emerald ash borer, and several ambrosia beetles which carry the fungi now killing redbay and sassafras in the East, and sycamore and willow trees southern California. Other pests, such as gypsy moths and spotted lanternflies, are transported here as egg masses attached to hard-sided imports, containers, or ship superstructures. Yet more forest pests are brought here with or in imported plants. Two rapid ʻōhiʻa death (ROD) pathogens and beech leaf disease are among newly detected pests probably introduced this way.

APHIS needs to be able to respond to these pests and to the others that will be introduced in coming years. To do so, APHIS must have adequate funding for four programs: “tree and wood pests” program at $60 million; “specialty crops” program at $192 millon; “methods development” at $28 million; and “detection” at $21 million.

The “Tree and Wood Pests” account currently supports eradication and control efforts targeting only three insects: the Asian longhorned beetle (ALB), emerald ash borer (EAB), and gypsy moth. The program to eradicate the ALB has received about two-thirds of the funds — $40 million. It has succeeded in eradicating 85% of the infestation in New York and some of the outlying infestations in Ohio. There is encouraging progress in Massachusetts, although at least one infested tree was detected recently in a new town within the quarantine zone. Clearly, this program must be maintained until final success is achieved everywhere.

The EAB program has been funded at $7 million in recent years. APHIS has proposed to terminate the EAB regulatory program. Program termination would greatly increase the risk that the EAB will spread to the mountain and Pacific coast states, where both riparian woodlands and urban forests would be severely damaged. Many stakeholders have urged APHIS to continue to regulate movement of firewood and other materials that facilitate the EAB’s spread.

The “Specialty Crops” program funds for APHIS’ regulation of nursery operations to prevent spread of the sudden oak death pathogen. Were SOD to become established in the East, it would threaten several oak species, sugar maple, and black walnut. It is therefore alarming that in 2019, plants infected by the SOD pathogen were shipped to 18 states. link to blog APHIS must step up its regulatory efforts to prevent a repetition of this disaster.

What You Can Do

Members of the Senate and House Agriculture Appropriations Subcommittees will set  final funding levels for APHIS programs. Ask your members of Congressto support maintaining the FY2020 funding levels for four APHIS programs: Tree and Wood Pests, Specialty Crops, Methods Development, and “Detection Funding”.

Also, ask them to adopt report language urging APHIS to continue regulating the EAB’s spread. 

Members of the House Agriculture Appropriations subcommittee

  • Sanford Bishop Jr., Chairman              GA
  • Rosa DeLauro                                      CT
  • Chellie Pingree                                     ME
  • Mark Pocan                                         WI
  • Barbara Lee                                         Calif 13th (Oakland)
  • Betty McCollum                                  MN
  • Henry Cuellar                                      TX
  •  
  • Jeff Fortenberry, Ranking Member      NE
  • Robert Aderholt                                               AL
  • Andy Harris                                         MD
  • John Moolenaar                                               MI

Members of the Senate Agriculture Appropriations subcommittee

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

Congressional Funding for Key USDA Programs

Fiscal Year 2020 began on October 1, 2019. In December Congress adopted funding bills (appropriations) for the full fiscal year – which ends next September.

APHIS

In its Agriculture Appropriations bill, Congress is holding steady or increasing funding for several APHIS programs that are important for addressing tree-killing pests:

  • tree and wood pests program – $60 million (this is the same as FY2019, and $4 million above the Administration’s request);
  • Pest Detection – $27.4 million (this is same as FY219 and as the Administration’s request);
  •  Methods development – $20.686 million (about the same as in FY2019 and the Administration’s request).
  • Specialty crops program – increased to $192.013 million. The accompanying report mentions two specific organisms as priorities – navel orangeworm and sudden oak death (apparently in response to an Oregon economic study and because Sen. Merkley is on the Appropriations Committee).  This was above the $186 million in both the House and Senate bills and considerably above the Administration’s request of $176 million.

The Agriculture Appropriations bill reiterates helpful language from past laws authorizing the Secretary of Agriculture “to transfer … funds available to … the Department [of Agriculture] such sums as may be deemed necessary” to respond to disease or pest emergencies that threaten any segment of the U.S. agricultural production industry. However, for the past decade the Office of Management and Budget has prevented frequent use of this power. APHIS did receive emergency funds to address the spotted lanternfly in February 2018 (APHIS Press Release No. 0031.18)

(You might remember that in 2017-2018 I put forward amendments to the Farm Bill that would have broadened APHIS’ access to emergency funds. I sought especially to ensure that efforts to protect native vegetation and urban trees would be eligible for funding. Unfortunately, this amendment was not enacted.)

USDA Forest Service

The overall Research and Development program is funded at $305 million – a few million above what I advocated for.  Of this total, $77 million is allocated to the Forest Inventory and Analysis program. In the past, research on invasive species has received about 10% of the total research funds. The USFS has been directed by Congress to restructure its research program. I will monitor any changes and determine the implications for invasive species concerns.

USFS engagement on pest issues with other federal agencies and state, local government, and private land managers is carried out through the Forest Health Management program under the State and Private Forestry division. While neither the appropriations legislation nor the accompanying report provides any direction on forest health activities, program staff report that funding for the overall program totals $104 million – about $6 million more than in FY2019. Program work on federal lands is funded at $66 million. However, $3 million has been deducted as part of a budget reform. After the deduction, this allocation is about $7 million above the funding level for FY 2019. Program work on non-federal “cooperative” lands is funded at $44 million. Congress has instructed that $2 million of this total be given to the eastern states’ forest health monitoring cooperative. The total “cooperative” lands allocation is $2 million above the FY2019 allocation.

Conclusion

I am very pleased by Congress maintaining or increasing funds for APHIS’ forestry programs. I am somewhat concerned by the pressure to reform USFS programs. I worry especially about the increasing focus on managing pests on federal lands compared to non-federal lands because nearly all damaging invasions begin on non-federal lands.

ash tree killed by emerald ash borer
Ann Arbor, MI
photo provided courtesy of former mayor John Hieftje

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

NPS Report Published in Journal – Has it Been Implemented? Can it Be?

invasive lake trout in Yellowstone National Park

The National Park Service has a legal mandate to manage lands and waters under its jurisdiction so as to “preserve unimpaired” their natural and cultural resources (NPS Organic Act 54 U.S.C. § 100101, et seq.) Invasive species undermine efforts to achieve that mission. In 2000, the NPS adopted a program to coordinate management of invasive plants. It’s not as effective as needed – see the strategic plan.  

However, only recently has NPS begun trying to prioritize and coordinate programs targetting the many animals and animal diseases which threaten Park resources. These organisms range from emerald ash borer and quagga mussels; to pythons, goats, and pigs; to diseases such as white nose syndrome of bats and avian malaria in Hawai`i.

In 2017, NPS released an internal study of the pervasive threat to Park resources posed by invasive animals and discussed steps to overcome barriers to more effective responses (Redford et al., 2017; full citation at end of this blog). The Chief of the Biological Resources Division initiated this report by asking a Science Panel to evaluate the extent of the invasive animal problem, assess management needs, review best practices, and assess potential models that could serve as a service-wide organizational framework. The report was to pay particular attention to innovative and creative approaches including, but not limited to, new genomic tools. I summarized the Panel’s  findings and conclusions in a blog when its report appeared in 2017.

Significantly, the Panel’s final report states that “a general record of failure to control invasive species across the system” was caused principally by a lack of support for invasive species programs from NPS leadership.

This report has now appeared in the form of a peer-reviewed article in the journal Biological Invasions by Dayer et al. 2019 (full citation at end of this blog). Although nine of the ten authors are the same on both reports there are substantive differences in content. For example, the journal article reiterates the principal findings and conclusions of the Panel’s final report, but in less blunt language.

What’s Been Watered Down

The toning down is seen clearly in the statements some of the panel’s six key findings.

Finding #1

            The panel’s report says:  invasive animals pose a significant threat to the cultural and natural values and the infrastructure of U.S. national parks. To date, the NPS has not effectively addressed the threat they pose.

            Dayer et al. says: the ubiquitous presence of invasive animals in parks undermines the NPS mission.

Finding #2

            The panel’s report says: managing invasive animals will require action starting at the highest levels, engaging all levels of NPS management, and will require changes in NPS culture and capacity.

            Dayer et al. says: coordinated action is required to meet the challenge.

Finding #4

            The panel’s report states: effective management of invasive animals will require stakeholder engagement, education, and behavior change.

            Dayer et al. says: public engagement, cooperation and support is [sic] critical.

Wording of the other three “key findings” was also changed, but these changes are less substantive.

Drayer et al. also avoid the word “failure” in describing the current status of NPS” efforts to manage invasive animal species. Instead, these authors conclude that the invasive species threat “is of sufficient magnitude and urgency that it would be appropriate for the NPS to formally declare invasive animals as a service-wide priority.”

Where the Documents Agree – Sort of

Both the Panel’s report and Dayer et al. state that invasive animal threats are under-prioritized and under-funded. They say that addressing this challenge must begin at the highest levels within the NPS, engage all levels of management, and will require investments from the NPS leadership.  Even within individual parks, they acknowledge that staffs struggle to communicate the importance of invasive animal control efforts to their park leadership, especially given competition with other concerns that appear to be more urgent. And they admit that parks also lack staff capacity in both numbers and expertise.

Also, both the Panel’s report and Dayer et al. urge the NPS to acknowledge formally that invasive animals represent a crisis on par with each of the three major crises that drove Service-wide change in the past: over-abundance of ungulates due to predator control; Yellowstone fire crisis (which led to new wildfire awareness in the country); and recognition of the importance of climate change.

The Panel suggested ways to update NPS’ culture and capacity: providing incentives for staff to (1) address long-term threats (not just “urgent” ones) and (2) put time and effort into coordinating with potential partners, including other park units, agencies at all levels of government, non-governmental organizations, private landowners, and economic entities. Dayer et al. mention these barriers but does not directly mention changing incentives as one way to overcome them.

Both the Panel’s report and Dayer et al. suggest integrating invasive animal threats and management into long-range planning goals for natural and cultural landscapes and day-to-day operations of parks and relevant technical programs (e.g., Biological Resources Division, Water Resources Division, and Inventory and Monitoring Division).

What is Missing from the Journal Publication

The Panel’s final report noted the need for increased funding. It said that such funding would need to be both consistent and sufficiently flexible to allow parks to respond to time-sensitive management issues. It proposes several approaches. These include incorporating some invasive species control programs (e.g., for weeds and wood borers) into infrastructure maintenance budgets; adopting invasive species as fundraising challenges for non-governmental partners (e.g., “Friends of Park” and the National Park Foundation); and adopting invasive species as a priority threat. Dayer et al. do not discuss funding issues.

The final internal report envisioned the NPS becoming a leader on the invasive species issue by 1) testing emerging best management practices, and 2) educating visitors on the serious threat that invasive species pose to parks’ biodiversity. As part of this process, the authors suggest that the NPS also take the lead in countering invasive species denialism.  Dayer et al. do not mention the issue of invasive species deniers.

Common Ground: Status of Invasive Animals in the Parks

The Panel’s report and Dayer et al. describe the current situation similarly:

  • More than half of the National parks that responded to the internal survey (245 of the 326 parks) reported problems associated with one or more invasive animal species.
  • The total number of species recorded was 331. This is considered to be an underestimate since  staffs often lack the ability to thoroughly survey their parks – especially for invertebrates.
  • Invasive species threats to Parks’ resources have been recognized for nearly 100 years. The original report notes that 155 parks reported the presence of one or more exotic vertebrate species in 1977. At that time, exotic animals were the fourth most commonly reported source of threats. In 1991, parks identified 200 unfunded projects to address exotic species, costing almost $30 million.
  • Only a small percentage of non-native animal invasions are under active management. Dayer et al. stated that 23% have management plans at the park unit level, and only 11% are reported as being ‘‘under control”.
  • Individual parks have effective programs targetting specific bioinvaders (examples are described in Redford et al;  a brief summary of these efforts is provided in my previous blog.    

Common Ground on Some Solutions

The report and Dayer et al. promote the same steps to improve invasive animal management across the Service. Both note that the NPS is adopting formal decision support tactics to update and strengthen natural resource management across the board. More specific steps include

  • establishing a coordination mechanism that enables ongoing and timely information sharing.
  • mainstreaming invasive species issue across the NPS branches or creating a cross-cutting IAS initiative among the Biological Resources Division, Water Resources Division, Inventory and Monitoring Division, Climate Change Response Program, and the regional offices.

While both documents call on the NPS to develop and test emerging technologies, the Panel’s final  report is more detailed, providing, in Table 5, a list of several areas of special interest, including remotely triggered traps, species-specific toxicants, toxicant delivery systems, drones, environmental DNA, and sterile-male releases. Dayer et al. mention eDNA and metabarcoding for ED/RR, biocontrol, and gene drives to control invasive pathogens. (Neither document discusses possible concerns regarding use of CRISPR and other gene-altering technologies, other than to say there would be public concerns that would need to be addressed.)

Both documents note the necessity of working with resource managers beyond park boundaries to detect and manage species before they arrive in parks. They note that developing and operationalizing such partnerships requires time and resources. Furthermore, invasive species prevention, eradication, and containment programs can be effective only with public support. They suggest strengthening NPS’ highly regarded public outreach and interpretation program to build such support, including through the use of citizen scientists.

The Panel’s final report said that the NPS should recognize that the condition of the ecosystem is the objective of efforts.  Its authors recognized that achieving this goal might require reconsidering how ecosystem management is organized within NPS so interacting stressors (e.g.,  fire) and management levers (e.g., pest eradication/suppression, prescribed fire) would be addressed. For this, the NPS would need to create a focused capacity to address the pressing issue of invasive animals in such a way that fosters integrated resource management within parks, focusing on fundamental values of ecosystem states, and not eradication targets. Dayer et al. called for the same changes without specifically labelling “condition of the ecosystem” as the goal.

Publication of Dayer et al. prompted me to find out what progress the NPS has made in responding to the “key findings” in the Panel’s final report (neither publication calls them “recommendations”). 

The National Park Service has acted on the recommendation to appoint an “invasive animal coordinator” within the Biological Resources Division. That person is Jennifer Sieracki. However, I wonder whether a person located in BRD is of sufficient stature to influence agency policy across all divisions. It is not clear whether there is active coordination with the national-level invasive plant coordinator.

Dr. Sieriaki responded to my query by noting the following new efforts 1) to improve outreach to partners and the public, and 2) to expand formal and informal partnerships with local, state, federal and tribal entities and local communities near parks.

  • NPS should soon finalize two formal partnerships with other agencies and organizations for outreach and management of invasive animal species.
  • NPS is working with researchers at the US Geological Survey to expand an existing modeling tool for identifying potential suitable habitat for invasive plant species to include invasive insects. This will help staff focus on the most likely locations for introductions and thus assist with early detection and control.
  • NPS has created a Community of Practice so NPS employees can seek each other’s advice on addressing invasive animal issues. A workshop of regional invasive species coordinators is planned for the coming months to guide direction of the service-wide program and identify other top priorities. (Seriacki pers. comm.)

I also wonder whether the NPS can achieve the top-level coordination and outreach to the public called for by both reports while complying with the terms of Public Law 116-9 – the John N. Dingle Jr. Conservation, Management, and Recreation Act, which was enacted a year ago. Title VII, Section 10(i)  of this law limits spending to carry out invasive species program management and oversight to 10% of appropriated funds. Less than 15% may be spent on investigations (research), development activities, and outreach and public awareness efforts (Section 10(h)). The law does allow spending for investigations regarding methods for early detection and rapid response, prevention, control, or management; as well as inspections and interception or confiscation of invasive species to prevent in-park introductions.

For more information, see my previous criticism of NPS failure to address invasive species issues here.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

See also my earlier discussion of the new legislation here.

SOURCES

Dayer, A.A., K.H. Redford, K.J. Campbell, C.R. Dickman, R.S. Epanchin-Niell, E.D. Grosholz, D.E. Hallac, E.F. Leslie, L.A. Richardson, M.W. Schwartz. 2019. The unaddressed threat of invasive animals in U.S. National Parks.  Biol Invasions

https://doi.org/10.1007/s10530-019-02128-0

Redford, K.H., K. Campbell, A. Dayer, C. Dickman, R. Epanchin-Niell, T. Grosholz, D. Hallac, L. Richardson, M. Schwartz. 2017. Invasive animals in U. S. National Parks: By a science panel. Natural Resource Report NPS/NRSS/BRD/NRR—2017/1564. NPS, Fort Collins, Colorado. Commissioned by the NPS Chief of Biological Resources Division. https://irma.nps.gov/DataStore/DownloadFile/594922

Jennifer Sieracki, Invasive Animal Coordinator, Biological Resources Division, National Park Service

New Study: Non-Native Pests Threaten 2/5ths of 48 States’ Forest Biomass

redbay in Georgia killed by laurel wilt
photo by Scott Cameron

In August I posted a blog summarizing information on pest introductions and impacts gleaned over my nearly 30 years of engagement. Already, I need to post an update, with an alarming estimate of introduced pests’ impacts across the continent.

Fei et al. 2019 (see the full citation is at the end of this blog) estimate that the 15 most damaging introduced species threaten 41.1% of the total live forest biomass in the 48 conterminous states.

In fact, this might be an underestimate of the pests’ impacts on biomass loss. Fei et al. (2019) note several limitations in their data that might result in such an underestimate. These include:

1) Mortality rates – and impacts – may increase over several decades following the initial invasion.

2) For pests already established throughout nearly all their potential ranges, pest-induced biomass loss could be substantially underestimated because most of their hosts died long ago, before the FIA data began to be collected. Consequently, the actual loss of these tree species from the forest is much greater than has been measured by the study’s methods.

3) Mortality rates vary among species and regions, which might introduce errors. They cite European gypsy moth, in which relatively small areas of heightened mortality due to repeated defoliations are swamped by lower mortality rates across the chosen measurement area. 

4) They considered only tree mortality, not crown or root dieback or reductions in tree growth.

5) They did not estimate carbon release to the forest floor as a result of defoliation.

6) Pest-related mortality rates may be underestimated due to salvage – although the authors did not observe evidence of substantial salvage efforts for most of these pests.

7) The data did not include losses from urban tree mortality.

Fei et al. estimate that more than 450 pests are established in the 48 conterminous states. This study excluded pests attacking palms; trees on U.S. Pacific and Caribbean islands; and pests native to portions of North America that are causing severe damage in naïve hosts – e.g., goldspotted oak borer. I did include the latter groups in my slightly larger estimate laid out in my August blog.

Fei et al. base their analysis on 83 of the introduced pest species considered to cause substantial effects on tree health and productivity and sometimes extensive tree mortality. (In my August blog, I described findings by another study by Guo et al (2019) that counted 91 species in that category.)

Fei et al. build on studies by a group of USDA Forest Service (USFS) scientists that I described in an earlier blog.

This team found that, nation-wide, non-native forest pests are causing an approximate 5% increase in total annual mortality by tree volume. They based their studies on analysis of 92,978 long-term plots maintained by the USDA Forest Inventory and Analysis program.

As noted above, the article cannot capture the full range of mortality in species affected by pests introduced decades ago. Chestnut blight, white pine blister rust, Port-Orford-Cedar root disease, beech bark disease, butternut canker, dogwood anthracnose, and European gypsy moths had all killed millions of trees before the USFS forest inventory plots were established. Fei et al. do form a solid basis for measuring some of the current impacts and projecting future ones.

The focus of the new article is on the amount of carbon being transferred from live biomass to dead organic matter as a result of the increased mortality caused by the 15 species with the highest impacts. This is arguably a more quantifiable measure of pests’ impacts than others’ approaches.  Here, I focus more narrowly on the documentation of exacerbated mortality as measured by the loss of biomass. Added together, these 15 species have caused an additional (i.e., above background levels) tree mortality rate of 5.53 TgC per year [defined as terragrams of carbon]. This estimate of annual conversion of live biomass to dead wood is similar in magnitude to that attributed to fire (5.4 to 14.2 TgC per year) (Fei et al. 2019). Yet the fire threat gets much more attention – for both prevention and management.

It is important to remember that conversion of living biomass to dead wood does not result in an immediate release of carbon to the atmosphere. Atmospheric releases take place through decomposition which is both gradual and takes place at varying rates. Some of the carbon will remain in the soil. And, over time, some of the carbon storage capacity will be restored by compensatory growth in unaffected trees and the recruitment of new regeneration – although this faster growth is delayed by as much as two or more decades after pest invasions begin (Fei et al. 2019).

American elm being killed by “Dutch” elm disease
photo by Cheryl Kaiser, University of Kentucky; bugwood.org

The 15 species of introduced pests used in this analysis are laurel wilt disease, chestnut blight, butternut canker, dogwood anthracnose, emerald ash borer (EAB), Dutch elm disease, red pine scale, beech bark disease, hemlock woolly adelgid, balsam woolly adelgid, European gypsy moth, white pine blister rust, green spruce aphid, sudden oak death, and Port-Orford cedar root disease. Of these, the highest elevation in biomass loss – as measured by FIA plot data – was caused by EAB, Dutch elm disease, beech bark disease, and hemlock woolly adelgid. We know that elms and beech, at least, began dying decades before the FIA data began to be collected. So the reported mortality rates are an underestimate. This is especially true because beech mortality is highest in the first decade after invasion by beech bark disease.

Annual levels of biomass loss are virtually certain to increase. First, pests will spread to new host ranges and infestations in already-invaded ranges will intensify. As a result, substantial amounts of the hosts’ biomass are at risk of exacerbated mortality. As I noted at the top of the blog, the total amount of host biomass at risk from these 15 species is estimated to be 5,197 TgC – or 41.1% of the total live forest biomass in the 48 conterminous states. Further exacerbating future losses is the likelihood that additional pests will be introduced. I would add that pests not included in this analysis – e.g., polyphagous and Kuroshio shot hole borers and possibly the spotted lanternfly – are also likely to contribute to losses of live forest biomass.

Fei et al. (2019) did not attempt to determine the economic value of this biomass loss or to address other types of losses to ecosystem services.

Remember that a separate set of studies reported by Potter et al. (2019) (the CAPTURE project) also relied on data from the FIA plots to evaluate the impact of introduced pests. These studies focused on identifying the host species at greatest risk rather than highest-impact pests or biomass loss. I find it reassuring that the Fei and Potter studies – using different approaches – resulted in very similar species rankings. See my discussion of the Potter studies here.

Together, the teams led by Potter and Fei set clear priorities for addressing the threats from non-native pests. What we need now is action! See my recommendations in my recent “solutions” blog.

U.S. Capitol – inform your representatives that you want action to protect trees!

SOURCES

Fei, S., R.S. Morin, C.M. Oswalt, and A.M. 2019. Biomass losses resulting from insect and disease invasions in United States forests

Potter, K.M., M.E. Escanferla, R.M. Jetton, and G. Man. 2019a. Important Insect and Disease Threats to United States Tree Species and Geographic Patterns of Their Potential Impacts. Forests. 2019 10 304.

Potter, K.M., M.E. Escanferla, R.M. Jetton, G. Man, and B.S. Crane. 2019b. Prioritizing the conservation needs of United States tree species: Evaluating vulnerability to forest insect and disease threats. Global Ecology and Conservation. (2019)

Congressional Funding for Key USDA Programs (Assuming it Ever Passes)

Fiscal Year 2020 began on 1 October. Congress has not yet passed funding bills (appropriations) for the full year. Agencies are operating now on a short-term continuing resolution which expires on November 21st. Meanwhile, representatives of the House and Senate will meet to reconcile the differences between the two bodies’ appropriations bills in hope that a year-long bill can be finalized by that time.

(Disagreement between President Trump and the Congress about funding for the border wall might prevent adoption of full-year appropriations bills and lead to another government shutdown.)

I report here the differences between House and Senate bills funding the USDA APHIS and Forest Service programs that are vital to addressing non-native forest pests.

APHIS

Over the years, I have complained that inadequate funding is a major cause of shortfalls in APHIS’ efforts to detect new invasions by tree-killing pests and to respond to those invasions in effective ways.

While funding levels are still too low, at least Congress is holding funding steady for APHIS for Fiscal Year 2020 (which began three weeks ago, on October 1st). Both House and Senate bills maintain funding for two crucial programs at the FY19 levels:

  • “tree and wood pests” program – $60 million (this matches the FY19 level; it is $4 million above the funding provided in previous years); and
  • “Pest Detection” – $27.4 million.

The House provided slightly higher funding than the Senate for two other programs:

  • “specialty crops” (including sudden oak death) – $186.5 million in the House bill, $186 million in the Senate bill; and
  • “methods development” – $21.686 million in the House bill, $20.686 million in the Senate bill.

In the report accompanying its bill, the House called for two additional funding options to address emergencies. First, it set up a contingency fund of $470,000 to control outbreaks of insects, plant diseases, animal diseases and pest animals and birds to meet emergency conditions. Second, the report repeated language from past reports that authorizes the Secretary to take “such sums as may be deemed necessary” from other USDA programs in order to counter pest emergencies threatening any segment of U.S. agricultural production.

The Senate report addressed several high-profile tree pests. It called for complete eradication of the Asian longhorned beetle; mandated that APHIS report on its efforts to eradicate ALB and spotted lanternfly and to minimize spread of the polyphagous and Kuroshio shot hole borers; and to assist states that have recently detected the emerald ash borer. (This language is helpful, but it falls short of what I previously advocated – that APHIS continue efforts to prevent EAB spread, especially through movement of firewood.)  The Senate report also urged APHIS to maintain FY19 level funding addressing the sudden oak death pathogen, in particular to improve understanding of the two strains of the pathogen present in Oregon’s forests link to blog to inform control and management techniques in wildlands. (Actually, management in wildlands falls largely to the Forest Service, with scientific input from both Agriculture Research Service and – to some extent – the NORS-DUC research nursery managed by APHIS.)

For a lengthier justification of my funding requests, see my earlier blog  on APHIS funding

Funding for Resistance Breeding through NIFA

As I pointed out in my blog in May, the 2018 Farm Bill included an amendment (Section 8708) that establishes a new priority for a grant program managed by the National Institute of Food and Agriculture. The amendment would support restoration to the forest of native tree species that have suffered severe levels of mortality caused by non-native insects, plant pathogens, or other pests. The amendment affects the Competitive Forestry, Natural Resources, and Environmental Grants Program under Section 1232(c)(2) of the Food, Agriculture, Conservation, and Trade Act of 1990 (16 U.S.C. 582A-8, as amended. However, this program  has not been funded for more than a decade. In my blog, I asked you to support a $10 million appropriation to NIFA to fund a competitive grant program for such forests restoration.

Neither the House nor the Senate provided funding for this program.

USFS

The House bill provides $277,155,000 for USFS Research and Development – nearly $20 million more than the Senate bill ($257,640,000). The House report links this increase to the recognition of the increasing risk to urban, rural, and wildland forests from insect and disease outbreaks and invasive plant infestations.  The report calls on the Forest Service to develop a research program that addresses several priorities critical to forest health, including preventing the spread of disease and invasive species.

USFS engagement on pest issues with other federal agencies and state, local government, and private land managers is carried out through the Forest Health Management program under the State and Private Forestry division. The Senate bill and report are confusing because they have separated out salaries and other expenses. As a result, I can’t compare its figures to those in previous years or to those from the House. Partly for this reason, I urge you to support the House bill, which is quite clear in appropriating $103,736,000 for Forest Health Management, which is a programmatic increase of $19 million above the FY19 level and $29,919,000 above the budget request. I am encouraged by the House’ report, which encourages the Forest Service to address high priority invasive species, pests, and diseases, including the emerald ash borer and bark beetle infestations.

For longer explanations, see my earlier blog on USFS funding.

These bills show an increasing awareness of forest pest issues in key funding committees in both the House and Senate.  Let’s reinforce this message – and spread it to the rest of Congress. Please contact your senators and representative and ask them to support these funding levels.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.