Scientists in New Zealand are saying explicitly that a forest’s unique mixture of species matters when considering the future. This mixture is the result of the forest’s evolutionary history. Losing members of the biological community reduces the forest’s ability to respond to current and future stresses – its resilience.
New Zealand’s forests are part of the broader legacy of the ancient supercontinent of Gondwanaland – the island nation’s plants have close relatives in South America, the Pacific Ocean islands, and Australia. Still, these forests are unique: 80% of New Zealand’s plant species are endemic. The forests are also species-rich. The warm temperate evergreen rain forests of the North Island are home to at least 66 woody plant species that can reach that reach heights above six meters (Simpkins et al. 2024).
These forests have been severely changed by human activity. In just ~ 750 years people have cut down approximately 80% of the original forest cover! (Simpkins et al. 2024) Of the eight million hectares of surviving native forest, a little over five million hectares is managed for the conservation of biodiversity, heritage, and recreation. Another 2 million hectares are plantations of non-native species.
sites in New Zealand where pine plantations are “wilding”
All these forests are challenged by introduced mammals – from European deer to Australian possums. Climate change is expected to cause further disturbance, both directly (through e.g., drought, extreme weather) and indirectly (e.g., by facilitating weed invasion and shifting fire regimes) (Simpkins et al. 2024).
Pathogen threats are also common threats to the native trees of the Pacific’s biologically unique island systems. For example, Ceratocystis lukuohia and C. huliohia (rapid ‘ōhi‘a death, or ROD). The latter is killing ‘ōhi‘a (Metrosideros polymorpha) on the Hawaiian Islands. More than 40% of native plant species in Western Australia are susceptible to Phytophthora cinnamomi. Here I focus on two pathogens, kauri dieback and myrtle rust, now ravaging New Zealand’s native flora. No landscape-level treatment is available for either pathogen.
When considering this suite of challenges, Simpkins et al. focus on these two pathogens’ probable impact on forest carbon sequestration. They worry in particular about erosion of the forests’ resilience due to loss of “ecological memory” – the life-history traits of the species (e.g., soil seed banks) and the structures left behind after individual disturbances.
one of the largest remaining kauri trees, “Tane Mahuta”, in Waipoua Kauri Forest; photo by F.T. Campbell
Kauri Dieback
The causal agent of Kauri dieback, Phytophthora agathidicida, is a soil-borne pathogen that spreads slowly in the absence of animal or human vectors. The disease affects a single species, Agathis australis (kauri, Araucariaceae). However, kauri is a long-lived, large tree that is a significant carbon sink. It probably modifies local soil conditions, nutrient and water cycles, and associated vegetation. Also, kauri has immense cultural significance.
Simpkins et al. note that kauri dieback threatens stand-level loss of A. australis – that is, local extinctions. In the absence of disturbance Kauri trees can grow to awe-inspiring size. In the 19th Century, before widespread logging, some were measured at 20 meters or more in circumference. Consequently, kauri dieback might cause a decline in aboveground live carbon storage of up to 55%. This loss would occur over a period of hundreds of years, not immediately.
Huge kauri are not likely to be replaced by other long-lived emergent conifers (based on an analysis of one species, Dacrydium cupressinum). Instead, kauri are probably going to be replaced by late-successional angiosperms. The authors discuss the ecological implications for levels of carbon storage and proportions of trees composed of Myrtaceae – exacerbating damage caused by myrtle rust (see below).
The expectation of Simpkins et al. that kauri will suffer at least local extinctions is based on an assumption that no kauri trees are resistant to the pathogen. Fortunately, this might not be true: different Agathis populations show various levels of tolerance to Agathis dieback. Identification and promotion of some levels of resistance could enable A. australis to retain a diminished presence in the landscape.
However, Lantham, et al. make clear that containing kauri dieback remains “challenging,” despite its discovery nearly 20 years ago (in 2006). Scientists and land managers have little information on the distribution of symptomatic trees, much less of the pathogen itself. This means they don’t know where infection foci are or how fast the disease is spreading.
As is often true, the pathogen is probably present in a stand for years, possibly a decade or more, before symptoms are noticed. This means that the current reliance on public reports of diseased trees, or targetting surveillance on easy-to-access sites (e.g., park entrances and along existing track networks), or at highly impacted areas readily identified through aerial methods, fails to detect early stages of infection. Indeed, it seems probable that P. agathidicida had been present in New Zealand’s ecosystems for decades before its formal identification.
The Waipoua forest is one of the largest areas of forest with old kauri stands in the country. A new analysis of aerial surveys done between 1950 and 2019, shows how the forest is changing. The number of dead trees increased more than four-fold and the number of unhealthy-looking trees increased 16-fold over these 70 years. Kauri dieback is now widespread in this forest, especially in areas near human activities like clearing for pasture or planting commercial pine plantations).
Lantham et al. have developed a model which they believe will help identify areas of higher risk so as to prioritize surveillance and inform responses. These could delimit the disease front and help implement quarantines or other measures aimed at limiting the spread of P. agathidicida to uninfected neighboring sites.
I hope New Zealand devotes sufficient resources to expand surveillance and management to levels commensurate with the threat to this ecologically and culturally important tree species.
Leptospermum scoparia; photo by Brian Gatwicke via Flickr
Myrtle Rust
Myrtle rust is a wind-borne disease that affecting numerous species in the Myrtaceae, including some of the dominant early successional species (e.g., Leptospermum spp.). Simpkins et al. expect that myrtle rust might hasten the decline of two such tree species (L. scoparium and Kunzea ericoides). However, these trees’ small size and rapid replacement by other species during succession minimizes the effect of their demise on carbon storage.
Because I am concerned about the irreplaceable loss to biodiversity, I note that Simpkins et al. also feared immediate threats to some trees in the host Myrtaceae family, specifically highly susceptible species such as Leptospermumbullata.
As I reported in a recent blog, a second group of scientists (McCarthy et al.) explored the threat from myrtle rust more broadly. Austropuccinia psidii has spread through Myrtaceae-dominated forests of the Pacific islands for about 20 years.
Trees in the vulnerable plant family, Myrtaceae, are second in importance (based on density and cover) in New Zealand’s forests. Successional shrub communities dominated by the two species named above, Kunzea ericoides and Leptospermum scoparium, are widespread in the northern and central regions of the North Island and in northeastern and interior parts of the South Island. These regions’ vulnerability is exacerbated by the area’s climate, which is highly suitable for A. psidii infection (Simpkins et al. 2024).
McCarthy et al. concluded that ifLeptospermumscoparium and Kunzea ericoides prove to be vulnerable to myrtle rust, their loss would cause considerable change in stand-level functional composition across these large areas. They probably would be replaced by non-native shrubs, which are already common on the islands. Any resulting forest will differ from that formed via Leptospermeae succession.
These authors also worry that the risk to native ecosystems would increase if more virulent strains of the myrtle rust pathogen were introduced or evolved. They note that A. psidii is known to have many strains and that these strains attack different host species.
SOURCES
Latham, M.C., A. Lustig, N.M. Williams, A. McDonald, T. Patuawa, J. Chetham, S. Johnson, A. Carrington, W. Wood, and D.P. Anderson. 2025. Design of risk-based surveillance to demonstrate absence of Phytophthora agathidicida in New Zealand kauri forests. Biol. Invasions (2025) 27, no. 26
McCarthy, J.K., S.J. Richardson, I. Jo, S.K. Wiser, T.A. Easdale, J.D. Shepherd, P.J. Bellingham. 2024. A Functional Assessment of Community Vulnerability to the Loss of Myrtaceae from Myrtle Rust. Diversity and Distributions, https://doi.org/10.1111/ddi.13928
Simpkins, C.E., P.J. Bellingham, K. Reihana, J.M.R. Brock, G.L.W. Perry. 2024. Evaluating the effects of two newly emerging plant pathogens on North Aotearoa-New Zealand forests using an individual-based model. Ecological Modelling, www.elsevier.com/locate/ecolmodel
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at https://treeimprovement.tennessee.edu/
Europe has been invaded by two insect species that North Americans should be watching out for. First, a Cerambycid, the wasp-mimicking tiger longicorn beetle, Xylotrechus chinensis. And second,the Buprestid cypress jewel beetle, Lamprodila festiva. We should also ensure that none of the other 500+ beetles introduced to Europe poses a threat to our trees. These are summarized in a 2024 paper by Bunescu et al.
Tiger Longicorn Beetle
This beetle is native to eastern Asia. It feeds on and kills mulberry trees (Moraceae: Morus spp.). It might also attack apple and pear trees and grapevines – Asian sources report these as hosts. The status of grapevines has been questioned by a Spanish experiment, in which artificial inoculations failed. I have seen no further information about the vulnerability of apple (Malus spp.) and pear (Pyrus spp.) (Saarto i Monteyu, Costa Ribeu, and Savin 2021)
In Europe, the pest threatens mulberry trees which are commonly planted for shade and ornamentation, especially in southern France, Spain and Greece (Saarto i Monteyu, Costa Ribeu, and Savin 2021). For example, there are more than 20,000 mulberry trees in Athens (EFSA 2021). The trees’ abundance contributes to spread of any associated pests, the level of damage caused by falling branches, and the expense of tree removal. Economic damages are those typically associated with wood-borer invasions of urban areas. That is, the cost of tree removals, loss of shade and amenity values, and increased risk of injury from falling branches.
We Americans should be concerned, too. Wild red mulberry (Morus rubra) occupies much of the eastern United States, from southern New England west to southeastern Minnesota, then south along the eastern edge of the Great Plains to central Texas, and east to southern Florida. It is also found in Bermuda. It grows primarily in flood plains and low moist hillsides. . Presumably it would also be attacked by Xylotrechus chinensis, although I don’t know whether anyone has tested this. As a native tree, red mulberry plays a role in natural ecosystems, including wildlife food supplies. Thus, America would see even more significant losses if Xylotrechus chinensis were to establish.
Morus rubra in Fairfax County, Virginia; photo by Fmartin via Wikipedia
Red mulberry is already declining in parts of its central range, possibly due to a bacterial disease. The effects and extent of this disease have not been investigated thoroughly.
Apples and pears are important crops across North America; the farm-gate value is estimated at $3.2 billon.
Introductions of the beetle to Spain, France, and Greece might have resulted from inadequately-treated wood packaging or other wood products. Detections of the species in wood imports were reported in Germany in 2007 and 2017 (Saarto i Monteyu, Costa Ribeu, and Savin 2021). The U.S. has also intercepted X. chinensis at least once, at the port of Philadelphia, in 2011 (EFSA 2021).
These detections have raised questions to which no-one yet has answers. First, can X. chinensis develop in cut logs? The European Food Safety Agency concluded that it can (EFSA 2021). Second, one detection involved a shipment of wooden items made from birch (Betula spp.) and willow (Salix spp). It is not yet clear whether these taxa are also hosts (EFSA 2021). (The wood species were not specified in the case of the other interceptions.) I have blogged often about how “leaky” the wood packaging pathway has been; to see these blogs, scroll below the “archives” section of the webpage, then click on the category “wood packaging”.
European scientists believe X. chinensis might also be transported in shipments of plants for planting. However, the beetle prefers to oviposit on large trees. This pathway is less viable for the United States since USDA APHIS allows imports of mulberries (Morus) and pears (Pyrus) only from Canada. Apple trees (Malus spp.), however, may be imported from France – which hosts an introduced population of X. chinensis – and other European countries.
Detection of any invasion by X. chinensis will pose the usual difficulties associated with woodborers. In some European cities, hundreds or even a thousand trees were infested before the outbreak was detected (EFSA 2021).
I am concerned that the Europeans appear to have been slow to respond to the threat from Xylotrechus chinensis. After several outbreaks were discovered in Greece, France, and Spain in 2017 and 2018, the European and Mediterranean Plant Protection Organization (EPPO) added X. chinensis to its Alert List. This action requires member states (which are not limited to European Union members) to report new outbreaks and inform about efforts to either stop or eradicate them (Saarto i Monteyu, Costa Ribeu, and Savin 2021).
Shortly afterwards the European Union Commission requested the European Food Safety Agency (EFSA) to conduct a risk assessment. This analysis was completed in 2021. (It contains lots of photos of the insect and its damage.) The analysis concluded that Xylotrechus chinensis could probably infest most areas in the Union and cause significant damage. The species meets the criteria for designation as a quarantine pest in the Union. However, as of December 2024, this action had not been taken. As a result, control measures for this species are not mandatory.
Introductions continue; an outbreak in Lombardy, Italy, was found in June 2023 (Sarto i Monteys, Savin, Torras i Tutusaus & Bedós i Balsach 2024). European regulations – following IPPC standards – also are linked to named pests and known outbreak locations. Such restrictions almost guarantee that the pest will continue to spread from not-yet-detected outbreaks. (Decades ago, after the emerald ash borer invasion, Michigan’s State Plant Regulatory Official, Ken Rasher, noted that, to be effective, “slow the spread” efforts must apply to areas beyond the known limits of the pest’s range.) The EFSA risk assessment did suggest delimitation of buffer zones around known European outbreaks. I don’t know whether such zones have been set up.
The risk assessment also recommended [true?] improving detection of this insect by developing male pheromones as lures. These have not been acted on. Guidance on best timing for treatment [trunk injections of systemic insecticides] also appears to have been taken up by Greece but not by Spain (Sarto i Monteys, Savin, Torras i Tutusaus & Bedós i Balsach 2024).
These authors include more information about the Xylotrechus chinensis life cycle and trajectory of the invasion,. They note that climate change appears to be altering the insect’s phenology. Especially, the adult flight period is beginning earlier in the spring.
Lamprodila festiva; Udo Schmidt via flickr
Cypress jewel beetle
This second pest of concern is a buprestid that attacks trees in the Cupressaceae. Infested trees generally die within a few years.
In its native Mediterranean range, the beetle feeds on native Juniperus, Cupressus and Tetraclinis. In invaded urban landscapes of Europe it attacks primarily introduced Cupressaceae , particularly Thuja, Chamaecyparis, Platycladus, Callitris, and some hybrids (Cupressocyparis). It has also been recorded as damaging Sequoia sempervirens (Brunescu, et al., 2024). (Genera in bold are native to North America.)
Thuja occidentalis; photo by H. Zell via Wikimedia
White cedar, Thuja occidentalis is the focus of Brunescu, et al.’s article. It is native to eastern Canada and much of the north-central and northeastern United States. The European and Mediterranean Plant Protection Organization (EPPO) has identified eight species in the Lamprodila genus as important pests, (Brunescu et al. 2024) so the danger might be more widespread. The invasion of Europe is probably the result of adult flight or other short-range transport. The article does not suggest pathways that the species might exploit to cross oceans.
SOURCES
Bunescu, H., T. Florian, D. Dragan, A. Mara, I-B. Hulujan, X-D. Rau. 2024 The Cypress Jewel Beetle Lamprodila Festiva Linné, 1767 (Coleoptera: Buprestidae), an Invasive Major Pest of Thuja Occidentalis Linné in Romania Hop and Medicinal Plants, 2024 XXXII, No. 1-2, 2024.
Saarto i Monteyu V., A. Costa Ribeu. I. Savin. 2021a. The invasive longhorn beetle Xylotrechus chinensis, pest of mulberries, in Euro: Study on its local spread & efficacy of abamectin control Plos One January 29, 2021. https://doi.org/10.1371/journal.pone.0245527
Sarto i Monteys, V., I. Savin, G. Torras i Tutusaus & M. Bedós i Balsach. 2024b. New evidence on the spread in Catalonia of the invasive longhorn beetle, Xylotrechus chinensis, & the efficacy of abamectin control. Scientific Reports | (2024) 14:26754 | https://doi.org/10.1038/s41598-024-78265-xwww.nature.com/scientificreports/
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at https://treeimprovement.tennessee.edu/
Yet again, studies focusing on issues of regeneration and mortality failing to consider all aspects.
Two studies focused on persistence of oak forests – a topic of great concern because of economic and ecological importance of oak-dominated forests. Since they dominate forests covering 78.5 million ha (51% of all forestland in the eastern United States) (Dey 2013), oaks shape stand structure and composition; their extensive crowns support many bird and arboreal mammal species; their acorns and leaf litter are the foundation of complex food webs; they live in symbiotic relationships with mycorrhizal fungi that enhance nutrient cycling and uptake within forest ecosystems. Deep roots prevent soil erosion. Oaks play a pivotal role in carbon sequestration (Khadka, Hong, and Bardhan 2024).
Until recently concern has focused on mortality of species in the red oak group (Section Lobatae). Now there is increasing concern about white oak (Quercus alba) mortality. Forest managers reported elevated mortality not just in resource-limited sites,e.g., those characterized by drought conditions, poor drainage, and soil nutrient deficiencies. Deaths are also occurring in higher-quality mesic sites, especially in forests with high stand density and advanced maturity stages. While white oaks go through a self-thinning phase – when dense stands of younger trees compete intensely for limited resources –it appears that some of the concern is focused on this stage (Khadka, Hong, and Bardhan 2024).
I think much of the concern is driven by economic rather than ecological considerations. None of oak species mentioned by Duana et al. (2024) is considered at risk by the authors of the recent conservation gap analysis (Beckman et al. 2019). (This is not surprising since presumably these species are sufficiently numerous to support commercial harvests). Furthermore, complaints about forest regeneration in the East are broader than oaks. A multi-author examination of the future of the northern forest projected decreases for four forest types = aspen-birch, elm-ash-cottonwood, oak-hickory, and spruce-fir. One type –maple-beech-birch – was expected to expand (Shifley and Moser 2016).
Regarding oaks specifically, Khadka, Hong, and Bardhan (2024) found that 30% of FIA plots in ten states composed primarily of white oak met their criteria for considering white oaks to be “declining”. However, higher mortality was limited to scattered areas (see map in Fig. 2B in the article). They suggested that contributing factors included higher elevation and distance from water in the north, intense competition in central regions, and drought stress in oak-hickory forests in the south. They also mentioned mature stands which are not replacing themselves in the southern region. Khadka, Hong, and Bardhan (2024) noted that oak decline complex is a factor in the southern region, and localized non-native insect pests (apparently spongy moth) in the northern region. (I will discuss both regeneration failures and the impacts of non-native pests below.) Still, these authors focus most attention to environmental stresses, e.g., droughts or water logging, poor soils, extreme weather events; and to human management, e.g., fire suppression, logging intensity, edge effects. They suggest strategies for mitigating these factors.
A second study, published by Duana et al. (2024), considered stocking levels of several species of oaks (Q. alba, Q. coccinea, Q. prinus, Q. rubra, and Q. velutina) but limited themselves to a large, temperate hardwood forest landscape in southeastern Ohio. Their purpose was to evaluate the efficacy of two levels of silvicultural intervention in sustaining oaks and restraining maples over the long-term, defined as 150-years (to 2060).
red oak (Quercus rubra); photo by F.T. Campbell
Their model suggested that continuing “business as usual” management would result in oaks shrinking from 22.8% dominance in 2010 to 12% dominance in 2160. Many of the remaining oaks would be large — in the 70 cm DBH class. The undesired maples would rise from 23% of total relative dominance in 2010 to 58% in 2160. The maples grew to almost the same size as the oaks: 50–65 cm DBH. As a result of these developments, the maple basal area increase by more than five times. The basal area of early successional species, e.g., poplars and aspens, decreased from 25% dominance to 11% dominance by 2160. Shade-tolerant species like elms, hickories, beech, and hemlock were suppressed by more competitive maples, occupying 17% of the total dominance.
Under the more manipulative alternative management strategy, oaks’ relative dominance on private land would stay above 20% of total relative dominance; all ages and sizes would be present. Maples would hold steadier at 23% to 33%. Shade-tolerant species would also rise, reaching a quarter of relative dominance on private some site (private public lands).
Duana et al. (2024) explained the outcome of “business as usual” management on maples’ ability to thrive in shaded conditions while oak regeneration requires sunlight to reach the forest floor. Another factor is the prevalence of high-grading harvesting practices. These factors result in a significant absence of oak trees in the sapling and midstory sizes, reflecting challenges to both oak seedlings and saplings. In other words, despite the continued growth of mature overstory oaks, the trees cannot reproduce. As Duana et al. (2024) point out, these results are supported by other field-based studies — including ones I have blogged about. Duana et al. (2024) discuss barriers and incentives to private landowners adopting more active management.
However, as I pointed out above, many tree species are regenerating poorly, not just oaks. Indeed, none of the eastern species fulfilling Potter and Riitters’ (2022) criteria for species threatened by poor regeneration was an oak. See Table 2 in Potter and Riitters (2022).
American sycamore (Platanus occidentalis) – one of the tree species not regenerating adequately; photo by F.T. Campbell
Hanberry et al. (2020) found that actual changes in forest species composition and density do not conform to expectations arising from three factors proposed as drivers: increased precipitation, increased white-tailed deer densities, and functional extinction of American chestnut. They found disappearance of frequent low-intensity fires to be determinative. However, Hanberry et al. (2020) also do not mention invasive plants or non-native pests other than chestnut blight.
Here I review others’ discussion of browsing by overabundant deer and competition from non-native plants as factors widely recognized as impeding regeneration of canopy trees, including oaks.
Deer
There is widespread agreement that browsing by overabundant deer is a major cause of poor regeneration of deciduous forests, especially but not limited to oaks (Quercus species.). Sources cited in my previous blogs include most studies discussed at the 2023 Northern Hardwood research forum (USDA, FS 2023b Proceedings), Spicer et al. (2023), Miller et al., and two studies based in either Ohio (the location of the study by Duana et al. [2024]) or neighboring Pennsylvania: Yaccuci et al. (2023) and Reed et al. 2023. Yacucci et al. reported that stem density of red (Q. rubra) and pin oaks (Q. palustris) was 13 times higher in canopy gaps located in areas with low densities of deer than in gaps in high-deer-density locations. In these gaps, oak saplings were growing into the subcanopy. Reed et al. said deer herbivory might be one of the most important drivers of forest composition and canopy structure over long time-scales.
Deer might be less important in New England. Stern et al. (2023), working in Vermont, focused on the importance of changing precipitation patterns in shifting numbers of red maple (Acer rubrum), sugar maple (Acer saccharum), American beech (Fagus grandifolia), and yellow birch (Betula alleghaniensis). Northern red oak was described as a common co-occurring dominant species in their plots, but was not discussed. In New Hampshire, Ducey et al. reported changing species composition as the forest ages but did not mention deer.
Some of these authors advocated wide-scale efforts to reduce deer populations in order to restore forest ecosystems. Yacucci et al. proposed enlisting those military posts that regularly cull deer into efforts to conserve and regenerate native plants. Otherwise, they say, the prognosis for regeneration is poor. Blossey et al. urged creation of a nation-wide lethal removal program.
Some of these studies indicated that additional biological entities were also important. Miller et al. stressed the role of invasive plants in suppressing forest regeneration in National parks from Virginia to Maine. Reed et al. focused on invading earthworms. One study – again, conducted in Ohio – Hovena et al. (2022), found that interactions between non-native shrubs and soil wetness overshadowed even the impact of deer herbivory on the species richness and abundance of seedlings.
Invasive Plants
FIA data indicate that 46% of forests in the eastern United States are invaded by alien plant species (Oswalt et al. 2016). Across the region, hundreds of non-native plant species are established in forests and woodlands. (See lists compiled by the Southeast Exotic Pest Plant Council, Mid-Atlantic Invasive Plant Council, Midwest Invasive Plants Network). Forests of the northern Midwest are among the most heavily invaded; in Ohio specifically, two studies found that more than 90% of FIA plots harbor at least one invasive plant species (Oswalt et al. [2016] and Kurtz (USDA NRS 311).
Many of these invaders are herbs, shrubs, or trees which can invade shaded environments. I remind you that a high proportion of these invasive plant species have been deliberately planted either directly in “natural” areas or in yards and gardens throughout the region.
Invasive plants can reduce native diversity, alter forest structure, suppress tree regeneration, alter nutrient cycling, and modify disturbance regimes (Miller et al. 2023).
Japanese stiltgrass (Microstegium vimineum) is widespread in forests of both Northeast (Oswalt et al. (2016) and Southeast. Stiltgrass invasions can suppress oak regeneration – at least as part of interactions with herbivore browsing and harvest history (Johnson et al. 2015).
Amur honeysuckle; via Flickr
Several non-native shrub and vine species are also widespread. For example, multiflora rose (Rosa multiflora) is the most frequently recorded invasive plant, present on 16.6% of surveyed plots in 39 states and five Canadian provinces. Again, the state with the highest proportion of plots invaded is Ohio – 85% (USDA Forest Service NRS-109). A study in central Ohio found that the presence of Amur honeysuckle (Lonicera mackii) had a stronger influence on tree species diversity than on the size or number of trees. Removing honeysuckle from heavily invaded areas promoted native tree growth (e.g., the height of tallest trees) and increased the tree canopy’s structural complexity for up to 10 years. Forest recovery began within two years of honeysuckle removal Fotis et al. (2022). (To access earlier blogs, visit www.nivemnic.us; scroll below “archives” to “categories”, click on “invasive plants.)
This impediment to forest regeneration is expected to get worse: non-native plant species are already more widely distributed than native species although the average invasive plant inhabits only about 50% of its expected range (Bradley, Early and Sorte 2015). From Virginia and West Virginia north to Maine, 80% of National Park units have experienced a significant increase in at least one trend measuring abundance of invasive plants in recent decades. In 10 parks (a quarter of all parks studied), total invasives increased significantly in two of three metrics (Miller et al. 2023).
Non-native Pests
Another set of biological factors affecting forest persistence and possibly regeneration is non-native pests that kill North American trees. I have complained that too few of the studies of regeneration discuss implications of these bioinvasions. So Khadka, Hong, and Bardhan (2024), Duana et al. (2024), and Hanberry et al. (2020) continue a tradition that I think is most unfortunate.
American elm in full glory; photo by F.T. Campbell
In Ohio specifically, Hovena et al. and Yacucci et al. did not mention loss of canopy elms, or ash, or the impending threat from beech leaf disease. All these trees are – or used to be – quite common in Ohio. More understandable, perhaps, is lack of attention to laurel wilt disease, which is just now at the state’s southern border. It might decimate an important native shrub, Lindera benzoin. American chestnut was also present in Ohio before its near disappearance following introduction of the chestnut blight fungus early in the 20th Century.
Another possibly damaging pest that has recently turned up in Ohio is the elm zigzag sawflyAproceros leucopoda. This Asian insect was first detected in North America in 2020 in Ontario. It quickly became apparent that it was more widespread. The Ohio detection came in 2023 – too recent to be discussed by Hovena et al. or Yacucci et al. Its impact several elm species is currently unknown.
There are exceptions. Both Stern et al. (2023) and Ducey at al. (2023) reported robust growth rates of American beech (Fagus grandifolia) despite decades-long establishment of beech bark disease. DMF Neither mentioned beech leaf disease – to be fair, this bioinvader is just starting to appear in New England. Stern et al. (2023) did not discuss hemlock woolly adelgid although Eastern hemlock (Tsuga canadensis) is also a common co-occurring dominant species in their plots. Ducey et al. did anticipate pest-driven reversals of increased numbers of eastern hemlock (Tsuga canadensis) and of white ash (Fraxinus americana). Stern et al. (2023) also did not mention oak wilt, despite a vulnerable host — northern red oak — being a common co-dominant species in his study site in Vermont. To be fair, oak wilt is not yet established in New England, although it is in New York and in western Ontario.
The most complete discussion of non-native pests is by Payne and Peet, working in the Piedmont of North Carolina. They state that several “specialist” pathogens have caused loss of important tree species, resulting in drastic and long-lasting shifts in community dynamics. They mention elms and dogwoods plus impending insect-caused widespread mortality of ash.
flowering dogwood (Cornus florida); photo by F.T. Campbell
Miller et al. describe the impact of EAB on ash resources in the National parks and express concern that BLD will cause considerable damage to some units of the system.
I think the failure of scientists to integrate invasive species’ impacts into assessments of changes in forest tree composition will mean that recommendations for management will be – at best – incomplete; at worst – wrong.
SOURCES
Beckman, E., Meyer, A., Denvir, A., Gill, D., Man, G., Pivorunas, D., Shaw, K., and Westwood, M. (2019). Conservation Gap Analysis of Native U.S. Oaks. Lisle, IL: The Morton Arboretum.
Blossey. B., D. Hare, and D.M. Waller, 2024. Where have all the flowers gone? A call for federal leadership in deer management in the US. Front. Conserv. Sci. 5:1382132. doi: 10.3389/fcosc.2024.1382132
Bradley, B.A., R. Early and C. J. B. Sorte. 2015. Space to invade? Comparative range infilling and potential range of invasive and native plants. Global Ecology and Biogeography
Dey, D.C. 2013. Sustaining Oak Forests in Eastern North America: Regeneration and Recruitment, the Pillars of Sustainability. For. Sci. 60(5):926–942 October 2013. http://dx.doi.org/10.5849/forsci.13-114
Duana, S., H.S. He, L.S. Pile Knapp, T.W. Bonnot, J.S. Fraser. 2024. Private land management is more important than public land in sustaining oaks in temperate forests in the eastern U.S. Journal of Environmental Management 352 (2024) 120013
Ducey, M.J, O.L. Fraser, M. Yamasaki, E.P. Belair, W.B. Leak. 2023. Eight decades of compositional change in a managed northern hardwood landscape. Forest Ecosystems 10 (2023) 100121
Fotis, A., Flower, C.E.; Atkins, J.W. Pinchot, C.C., Rodewald, A.D., Matthews, S. 2022. The short-term and long-term effects of honeysuckle removal on canopy structure and implications for urban forest management. Forest Ecology and Management. 517(6): 120251. 10 p. https://doi.org/10.1016/j.foreco.2022.120251
Hanberry, B.B., M.D. Abrams, M.A. Arthur & J.M. Varner. 2020. Reviewing Fire, Climate, Deer, & Foundation Spp as Drivers of Historically Open Oak & Pine Forests & Transition to Closed Forests. Front. For. Glob. Change 3:56. doi: 10.3389/ffgc.2020.00056
Hovena, B.M., K.S. Knight, V.E. Peters, and D.L Gorchov. 2022. Woody seedling community responses to deer herbivory, intro shrubs, and ash mortality depend on canopy competition and site wetness. Forest Ecology and Management. 523 (2022) 120488
Johnson, D.J., S.L. Flory, A. Shelton, C. Huebner and Keith Clay. 2015 Interactive effects of a non-native invasive grass Microstegium vimineum and herbivore exclusion on experimental tree regeneration under differing forest management. Journal of Applied Ecology 2015, 52, 210–219 doi: 10.1111/1365-2664.12356
Khadka, H.S. Hong, S. Bardhan. 2024. Investigating the Spatial Pattern of White Oak (Q. alba L.) Mortality Using Ripley’s K Function across the Ten States of the eastern United States. Forests 2024, 15, 1809. https://doi.org/10.3390/f15101809
Miller, K.M., S.J. Perles, J.P. Schmit, E.R. Matthews, and M.R. Marshall. 2023. Overabundant deer and invasive plants drive widespread regeneration debt in eastern United States national parks. Ecological Applications. 2023;33:e2837. https://onlinelibrary.wiley.com/r/eap Open Access
Oswalt, C.M., S. Fei, Q. Guo, B.V. Iannone III, S.N. Oswalt, B.C. Pijanowski, K.M. Potte. 2916. A subcontinental view of forest plant invasions. NeoBiota. 24: 49-54 http://www.srs.fs.usda.gov/pubs/48489
Payne, C.J. and R.K. Peet. 2023. Revisiting the model system for forest succession: Eighty years of resampling Piedmont forests reveals need for an improved suite of indicators of successional change. Ecological Indicators 154 (2023) 110679
Deer browse susceptibility limits c’nut restoration success in northern hardwood forests PUBLIC
Potter, K.M and Riitters, K. 2022. A National Multi-Scale Assessment of Regeneration Deficit as an Indicator of Potential Risk of Forest Genetic Variation Loss. Forests 2022, 13, 19.
https://doi.org/10.3390/f13010019.
Reed, S.P., D.R. Bronson, J.A. Forrester, L.M. Prudent, A.M. Yang, A.M. Yantes, P.B. Reich, and L.E. Frelich. 2023. Linked disturbance in the temperate forest: Earthworms, deer, and canopy gaps. Ecology. 2023;104:e4040. https://onlinelibrary.wiley.com/r/ecy
Shifley, S.R. and W.K. Moser, editors. 2016. Future Forests of the Northern United States
Simpson, A., and Eyler, M.C., 2018, First comprehensive list of non-native species established in three major regions of the United States: U.S. Geological Survey Open-File Report 2018-1156, 15 p., https://doi.org/10.3133/ofr20181156.
ISSN 2331-1258 (online)
Spicer, M.E., A.A. Royo, J.W. Wenzel, and W.P. Carson. 2023. Understory plant growth forms respond independently to combined natural and anthropogenic disturbances. Forest Ecology and Management 543 (2023) 12077
Growth trends and environmental drivers of major tree species of the northern hardwood forest of eastern North America J. For. Res. (2023) 34:37–50 https://doi.org/10.1007/s11676-022-01553-7
Stout, S.L., A.T. Hille, and A.A. Royo. 2023. Science-Management Collaboration is Essential to Address Current and Future Forestry Challenges. IN United States Department of Agriculture. Forest Service. 2023. Proceedings of the First Biennial Northern Hardwood Conference 2021: Bridging Science and Management for the Future. Northern Research Station General Technical Report NRS-P-211 May 2023
United States Department of Agriculture, Forest Service. 2023a. Proceedings of the First Biennial Northern Hardwood Conference 2021: Bridging Science and Management for the Future. Northern Research Station General Technical Report NRS-P-211 May 2023
USDA Forest Service Northern Research Station Rooted in Research ISSUE 18 | SEPTEMBER 2023
Kurtz, C.M. 2023. An assessment of invasive plant species in northern U.S. forests. Res. Note NRS-311. http://doi.org/10.2737/NRS-RN-311
United States Department of Agriculture Forest Service General Technical Report NRS-109. An Assessment of Invasive Plant Species Monitored by the Northern Research Station
Forest Inventory and Analysis Program, 2005 through 2010.
Yacucci, A.C., W.P. Carson, J.C. Martineau, C.D. Burns, B.P. Riley, A.A. Royo, T.P. Diggins, I.J. Renne. 2023. Native tree species prosper while exotics falter during gap-phase regeneration, but only where deer densities are near historical levels New Forests https://doi.org/10.1007/s11056-023-10022-w
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at https://treeimprovement.tennessee.edu/
ʻŌhiʻa trees killed by ROD; photo by Richard Sniezko, USFS
Several Hawaiian tree species are at risk due to introduced forest pests. Two of the Islands’ most widespread species are among the at-risk taxa. Their continuing loss would expose watersheds on which human life and agriculture depend. Habitats for hundreds of other species – many endemic and already endangered – would lose their foundations. These trees also are of the greatest cultural importance to Native Hawaiians.
I am pleased to report that Hawaiian scientists and conservationists are trying to protect and restore them.
Other tree species enjoy less recognition … and efforts to protect them have struggled to obtain support.
1) koa (Acacia koa)
Koa is both a dominant canopy tree and the second-most abundant native tree species in Hawai`i in terms of areas covered. The species is endemic to the Hawaiian archipelago. Koa forests provide habitat for 30 of the islands’ remaining 35 native bird species, many of which are listed under the U.S. Endangered Species Act. Also dependent on koa forests are native plant and invertebrate species and the Islands’ only native terrestrial mammal, the Hawaiian hoary bat. Finally, koa forests protect watersheds, add nitrogen to degraded soils, and store carbon [Inman-Narahari et al.]
Koa forests once ranged from near sea level to above 7000 ft (2100 m) on both the wet and dry sides of all the large Hawaiian Islands. Conversion of forests to livestock grazing and row-crop agriculture has reduced koa’s range. Significant koa forests are now found on four islands – Hawai’i, Maui, O‘ahu, and Kauaʻi. More than 90% of the remaining koa forests occur on Hawai`i Island (the “Big Island) [Inman-Narahari et al.]
In addition to its fundamental environmental role, koa has immense cultural importance. Koa represents strength and the warrior spirit. The wood was used traditionally to make sea-going canoes. Now Koa is widely used for making musical instruments, especially guitars and ukuleles; furniture, surfboards, ornaments, and art [Inman-Narahari et al.]
Koa timber has the highest monetary value of any wood harvested on the Islands. However, supplies of commercial-quality trees are very limited (Dudley et al. 2020). Harvesting is entirely from old-growth forests on private land. [Inman-Narahari et al.]
Koa forests are under threat by a vascular wilt disease caused by Fusarium oxysporum f. sp. koae (FOXY). This disease can kill up to 90% of young trees and – sometimes — mature trees in native forests. The fungus is a soil-dwelling organism that spreads in soil and infects susceptible plants through the root system (Dudley et al. 2020).
Conservation and commercial considerations have converged to prompt efforts to breed koa resistant to FOXY. Conservationists hope to restore native forests on large areas where agriculture has declined. The forestry industry seeks to enhance supplies of the Islands’ most valuable wood. Finally, science indicated that a breeding program would probably be successful. Field trials in the 1990s demonstrated great differences in wilt-disease mortality among seed sources (the proportion of seedlings surviving inoculation ranged from 4% to 91.6%) [Sniezko 2003; Dudley et al. 2009].
In 2003, Dudley and Sniezko outlined a long-term strategy for exploring and utilizing genetic resistance in koa. Since then, a team of scientists and foresters has implemented different phases of the strategy and refined it further (Dudley et al. 2012, 2015, 2017; Sniezko et al. 2016]
First, scientists determined that the wilt disease is established on the four main islands. Having obtained more than 500 isolates of the pathogen from 386 trees sampled at 46 sites, scientists tested more than 700 koa families from 11 ecoregions for resistance against ten of the most highly virulent isolates (Dudley et al. 2020).
The Hawaiian Agricultural Research Center (HARC), supported by public and private partners, has converted the field-testing facilities on Hawai`i, Maui, and Oahu into seed orchards. The best-performing tree families are being grown to maturity to produce seeds for planting. It is essential that the seedlings be not just resistant to FOXY but also adapted to the ecological conditions of the specific site where they are to be planted [Dudley et al. 2020; Inman-Narahari et al. ] Locally adapted, wilt-resistant seed has been planted on Kauaʻi and Hawai`i. Preparations are being made to plant seed on Maui and O‘ahu also. Scientists are also exploring methods to scale up planting in both restoration and commercial forests [R. Hauff pers. comm.].
koa; photo by David Eickhoff via Flickr
Restoration of koa on the approximately half of lands in the species’ former range that are privately owned will require that the trees provide superior timber. Private landowners might also need financial incentives since the rotation time for a koa plantation is thought to be 30-80 years. [Inman-Narahari et al.]
Plantings on both private and public lands will need to be protected from grazing by feral ungulates and encroachment by competing plants. These management actions are intensive, expensive, and must be maintained for years.
Some additional challenges are scientific: uncertainties about appropriate seed zones, efficacy of silvicultural approaches to managing the disease, and whether koa can be managed for sustainable harvests. Human considerations are also important: Hawai`i lacks sufficient professional tree improvement or silvicultural personnel, a functioning seed distribution and banking network — and supporting resources. Finally, some segments of the public oppose ungulate control programs. Inman-Narahari et al.
Finally, scientists must monitor seed orchards and field plantings for any signs of maladaptation to climate change. (Dudley et al. 2020).
2) ʻŌhiʻa Metrosideros polymorpha)
ʻŌhiʻa lehua is the most widespread tree on the Islands. It dominates approximately 80% the biomass of Hawaii’s remaining native forest, in both wet and dry habitats. ʻŌhiʻa illustrates adaptive radiation and appears to be undergoing incipient speciation. The multitude of ecological niches and their isolation on the separate islands has resulted in five recognized species in the genus Metrosideros. Even the species found throughout the state, Metrosideros polymorpha, has eight recognized varieties (Luiz et al. (2023) (some authorities say there are more).
Loss of this iconic species could result in significant changes to the structure, composition, and potentially, the function, of forests on a landscape level. High elevation ‘ohi‘a forests protect watersheds across the state. ʻŌhiʻa forests shelter the Islands’ one native terrestrial mammal (Hawaiian hoary bat), 30 species of forest birds, and more than 500 endemic arthropod species. Many species in all these taxa are endangered or threatened (Luiz et al. 2023). The increased light penetrating interior forests following canopy dieback facilitates invasion by light-loving non-native plant species, of which Hawai`i has dozens. There is perhaps no other species in the United States that supports more endangered taxa or that plays such a geographical dominant ecological keystone role [Luiz et al. 2023]
For many Native Hawaiians, ‘ōhi‘a is a physical manifestation of multiple Hawaiian deities and the subject of many Hawaiian proverbs, chants, and stories; and foundational to the scared practice of many hula. The wood has numerous uses. Flowers, shoots, and aerial roots are used medicinally and for making lei. The importance of the biocultural link between ‘ōhi‘a and the people of Hawai`i is described by Loope and LaRosa (2008) and Luiz et al. (2023).
In 2010 scientists detected rapid mortality affecting ‘ōhi‘a on Hawai‘i Island. Scientists determined that the disease is caused by two recently-described pathogenic fungi, Ceratocystis lukuohia and Ceratocystis huliohia. The two diseases, Ceratocystis wilt and Ceratocystis canker of ʻōhiʻa, are jointly called “rapid ‘ōhi‘a death”, or ROD. The more virulent species, C. lukuohia, has since spread across Hawai`i Island and been detected on Kaua‘i. The less virulent C. huliohia is established on Hawai`i and Kaua‘i and in about a dozen trees on O‘ahu. One tree on Maui was infected; it was destroyed, and no new infection has been detected [M. Hughes pers. comm.] As of 2023, significant mortality has occurred on more than one third of the vulnerable forest on Hawai`i Island, although mortality is patchy.
[ʻŌhiʻa is also facing a separate disease called myrtle rust caused by the fungus Austropuccinia psidii; to date this rust has caused less virulent infections on ‘ōhi‘a.]
rust-killed ‘ōhi‘a in 2016; photo by J.B. Friday
Because of the ecological importance of ‘ōhi‘a and the rapid spread of these lethal diseases, research into possible resistance to the more virulent pathogen, C. lukiohia began fairly quickly, in 2016. Some ‘ōhi‘a survive in forests on the Big Island in the presence of ROD, raising hopes that some trees might possess natural resistance. Scientists are collecting germplasm from these lightly impacted stands near high-mortality stands (Luiz et al. 2023). Five seedlings representing four varieties of M. polymorpha that survived several years’ exposure to the disease are being used to produce rooted cuttings and seeds for further evaluation of these genotypes.
ʻŌhiʻa flowers
Encouraged by these developments, and recognizing the scope of additional work needed, in 2018 stakeholders created a collaborative partnership that includes state, federal, and non-profit agencies and entities, ʻŌhiʻa Disease Resistance Program (‘ODRP) (Luiz et al. 2023). The partnership seeks to provide baseline information on genetic resistance present in all Hawaiian taxa in the genus Metrosideros. It aims further to develop sources of ROD-resistant germplasm for restoration intended to serve several purposes: cultural plantings, landscaping, and ecological restoration. ‘ODRP is pursuing screenings of seedlings and rooted cuttings sampled from native Metrosideros throughout Hawai`i while trying to improve screening and growing methods. Progress will depend on expanding these efforts to include field trials; research into environmental and genetic drivers of susceptibility and resistance; developing remote sensing and molecular methods to rapidly detect ROD-resistant individuals; and support already ongoing Metrosideros conservation. If levels of resistance in wild populations prove to be insufficient, the program will also undertake breeding (Luiz et al. 2023).
To be successful, ‘ODRP must surmount several challenges (Luiz et al. 2022):
increase capacity to screen seedlings from several hundred plants per year to several thousand;
optimize artificial inoculation methodologies;
determine the effects of temperature and season on infection rates and disease progression;
find ways to speed up seedlings’ attaining sufficient size for testing;
develop improved ways to propagate ʻōhiʻa from seed and rooted cuttings;
establish sites for field testing of putatively resistant trees across a wide range of climatic and edaphic conditions;
establish seed orchard, preferably on several islands;
establish systems for seed collection from the wide variety of subspecies/varieties;
if breeding to enhance resistance is appropriate, it will be useful to develop high-throughput phenotyping of the seed orchard plantings.
Developing ROD-resistant ‘ōhi‘a is only one part of a holistic conservation program. Luiz et al. (2023) reiterate the importance of quarantines and education to curtail movement of infected material and countering activities that injure the trees. Fencing to protect these forests from grazing by feral animals can drastically reduce the amount of disease. Finally, scientists must overcome the factors there caused the almost complete lack of natural regeneration of ‘ōhi‘a in lower elevation forests. Most important are competition by invasive plants, predation by feral ungulates, and the presence of other diseases, e.g., Austropuccinia psidii.
Hawaii’s dryland forests are highly endangered: more than 90% of dry forests are already lost due to habitat destruction and the spread of invasive plant and animal species. Two tree species are the focus of species-specific programs aimed at restoring them to remaining dryland forests. However, support for both programs seems precarious and requires stable long-term funding; disease resistance programs often necessitate decades-long endeavors.
naio in bloom; photo by Forrest & Kim Starr via Creative Commons
1) naio (Myoporum sandwicense)
Naio grows on all of the main Hawaiian Islands at elevations ranging from sea level to 3000 m. While it occurs in the full range of forest types from dry to wet, naio is one of two tree species that dominate upland dry forests. The other species is mamane, Sophora chrysophylla. Naio is a key forage tree for two endangered honeycreepers, palila (Loxioides bailleui) and `akiapola`au (Hemignathus munroi). The tree is also an important host of many species of native yellow-face bees (Hylaeus spp). Finally, loss of a native tree species in priority watersheds might lead to invasions by non-native plants that consume more water or increase runoff.
The invasive non-native Myoporum thrips, Klambothrips myopori, was detected on Hawai‘i Island in December 2008 (L. Kaufman website). In 2018 the thrips was found also on Oahu (work plan). The Myoporum thrips feeds on and causes galls on plants’ terminal growth. This can eventually lead to death of the plant.
Aware of thrips-caused death of plants in the Myoporum genus in California, the Hawaii Department of Lands and Natural Resources Division of Forestry and Wildlife and the University of Hawai‘i began efforts to determine the insect’s distribution and infestation rates, as well as the overall health of naio populations on the Big Island. This initiative began in September 2010, nearly two years after the thrips’ detection. Scientists monitored nine protected natural habitats for four years. This monitoring program was supported by the USFS Forest Health Protection program. This program is described by Kaufman.
naio monitoring sites from L. Kaufman article
The monitoring program determined that by 2013, the thrips has spread across most of Hawi`i Island, on its own and aided by human movement of landscaping plants. More than 60% of trees being monitored had died. Infestation and dieback levels had both increased, especially at medium elevation sites. The authors feared that mortality at high elevations would increase in the future. They found no evidence that natural enemies are effective controlling naio thrips populations on Hawai`i Island.
Kaufman was skeptical that biological control would be effective. She suggested, instead, a breeding program, including hybridizing M. sandwicensis with non-Hawaiian Myoporum species that appear to be resistant to thrips. Kaufman also called for additional programs: active monitoring to prevent thrips from establishing on neighboring islands; and collection and storage of naio seeds.
Ten years later, in February 2024, DLNR Division of Forestry and Wildlife adopted a draft work plan for exploring possible resistance to the Myoporum thrips. Early steps include establishing a database to record data needed to track parent trees, associated propagules, and the results of tests. These data are crucial to keeping track of which trees show the most promise. Other actions will aim to hone methods and processes. Among practical questions to be answered are a) whether scientists can grow even-aged stands of naio seedlings; b) identifying the most efficient resistance screening techniques; and c) whether K. myopori thrips are naturally present in sufficient numbers to be used in tests, or – alternatively – whether they must be augmented. [Plan]
Meanwhile, scientists have begun collecting seed from unaffected or lightly affected naio in hotspots where mortality is high. They have focused on the dry and mesic forests of the western side of Hawai`i (“Big”) Island, where the largest number of naio populations still occur and are at high risk. Unfortunately, these “lingering” trees remain vulnerable to other threats, such as browsing by feral ungulates, competition with invasive plants, drought, and reduced fecundity & regeneration.
Hawai`i DLNR has secured initial funding from the Department of Defense’s REPI program to begin a pest resistance project and is seeking a partnership with University of Hawai`i to carry out tests “challenging” different naio families’ resistance to the thrips [R. Hauff pers. comm.]
wiliwili; photo by Forrest & Kim Starr
2) wiliwili (Erythrina sandwicensis)
Efforts to protect the wiliwili have focused on biological control. The introduced Erythrina gall wasp, Quadrastichus erythrinae (EGW) was detected on the islands in 2005. It immediately caused considerable damage to the native tree and cultivated nonnative coral trees.
A parasitic wasp, Eurytoma erythrinae, was approved for release in November 2008 – only 3 ½ years after EGW was detected on O‘ahu. The parasitic wasp quickly suppressed the gall wasp’s impacts to both wiliwili trees and non-native Erythrina. By 2024, managers are once again planting the tree in restoration projects.
However, both the gall wasp and a second insect pest – a bruchid, Specularius impressithorax – can cause loss of more than 75% of the seed crop. This damage means that the tree cannot regenerate. By 2019, Hawaiian authorities began seeking permission to release a second biocontrol gent, Aprostocitus nites.Unfortunately, the Hawai’i Department of Agriculture still has not approved the release permit despite five years having passed. Once they have this approval, the scientists will then need to ask USDA Animal and Plant Health Inspection Service (APHIS) for its approval [R. Hauff, pers. comm.]
SOURCES
www.RapidOhiaDeath.org
Dudley, N., R. James, R. Sniezko, P. Cannon, A. Yeh, T. Jones, & Michael Kaufmann. 2009? Operational Disease Screening Program for Resistance to Wilt in Acacia koa in Hawai`i. Hawai`i Forestry Association Newsletter August 29 2009
Dudley, N., T. Jones, K. Gerber, A.L. Ross-Davis, R.A. Sniezko, P. Cannon & J. Dobbs. 2020. Establishment of a Genetically Diverse, Disease-Resistant Acacia koa Seed Orchard in Kokee, Kauai: Early Growth, Form, & Survival. Forests 2020, 11, 1276; doi:10.3390/f11121276 www.mdpi.com/journal/forests
Friday, J. B., L. Keith, and F. Hughes. 2015. Rapid ʻŌhiʻa Death (Ceratocystis Wilt of ʻŌhiʻa). PD-107, College of Tropical Agriculture and Human Resources, University of Hawai‘i, Honolulu, HI. URL: https://www.ctahr.HI.edu/oc/freepubs/pdf/PD-107.pdf Accessed April 3, 2018.
Friday, J.B. 2018. Rapid ??hi?a Death Symposium -West Hawai`i (“West Side Symposium”) March 3rd 2018, https://vimeo.com/258704469 Accessed April 4, 2018 (see also full video archive at https://vimeo.com/user10051674)
Inman-Narahari, F., R. Hauff, S.S. Mann, I. Sprecher, & L. Hadway. Koa Action Plan: Management & research priorities for Acacia koa forestry in Hawai`i. State of Hawai`i Department of Land & Natural Resources Division of Forestry & Wildlife no date
Kaufman, L.V, J. Yalemar, M.G. Wright. In press. Classical biological control of the erythrina gall wasp, Quadrastichus erythrinae, in Hawaii: Conserving an endangered habitat. Biological Control. Vol. 142, March 2020
Loope, L. and A.M. LaRosa. 2008. ‘Ohi’a Rust (Eucalyptus Rust) (Puccinia psidii Winter) Risk Assessment for Hawai‘i.
Luiz, B.C. 2017. Understanding Ceratocystis. sp A: Growth, morphology, and host resistance. MS thesis, University of Hawai‘i at Hilo.
Luiz, B.C., C.P. Giardina, L.M. Keith, D.F. Jacobs, R.A. Sniezko, M.A. Hughes, J.B. Friday, P. Cannon, R. Hauff, K. Francisco, M.M. Chau, N. Dudley, A. Yeh, G. Asner, R.E. Martin, R. Perroy, B.J. Tucker, A. Evangelista, V. Fernandez, C. Martins-Keli’iho.omalu, K. Santos, R. Ohara. 2023. A framework for establishlishing a rapid ‘Ohi‘a death resistance program New Forests 54, 637–660. https://doi.org/10.1007/s11056-021-09896-5
Sniezko, R.A., N. Dudley, T. Jones, & P. Cannon. 2016. Koa wilt resistance & koa genetics – key to successful restoration & reforestation of koa (Acacia koa). Acacia koa in Hawai‘i: Facing the Future. Proceedings of the 2016 Symposium, Hilo, HI: www.TropHTIRC.org , www.ctahr.HI.edu/forestry
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at https://treeimprovement.tennessee.edu/
The number of introduced forest pathogens are increasing – creating a crisis that is recognized by more scientists. These experts say tree diseases are reshaping both native and planted forests around the globe. The diseases are threatening biodiversity, ecosystem services, provision of products, and related human wellbeing. Some suggest that bioinvasions might threaten forests as much as climate change, while also undermining forests’ role in carbon sequestration.
Unfortunately, I see little willingness within the plant health regulatory community to tackle improving programs to slow introductions. Even when the scientists documenting the damage work for the U.S. Department of Agriculture – usually the U.S. Forest Service — USDA policy-makers don’t act on their findings. [I tried to spur a conversation with USDA 2 years ago. So far, no response.]
counties where beech leaf disease has been detected
What the scientists say about these pests’ impacts
Andrew Gougherty (2023) – one of the researchers employed by the USDA Forest Service – says that emerging infectious tree diseases are reshaping forests around the globe. Furthermore, new diseases are likely to continue appearing in the future and threaten native and planted forests worldwide. [Full references are provided at the end of the blog.] Haoran Wu (2023/24) – a Master’s Degree student at Oxford University – agrees that arrival of previously unknown pathogens are likely to alter the structure and composition of forests worldwide. Weed, Ayers, and Hicke (2013) [academics] note that forest pests — native and introduced — are the dominant sources of disturbance to North American forests. They suggest that, globally, bioinvasions might be at least as important as climate change as threats to the sustainability of forest ecosystems. They are concerned that recurrent forest disturbances caused by pests might counteract carbon mitigation strategies.
Scientists have proclaimed these warnings for years. Five years ago, Fei et al. (2019) reported that the 15 most damaging pests introduced to the United States — cumulatively — had already caused tree mortality to exceed background levels by 5.53 teragrams of carbon per year. As these 15 pests spread and invasions intensify, they threaten 41.1% of the total live forest biomass in the 48 coterminous states. Poland et al. (2019) (again – written by USFS employees) document the damage to America’s forest ecosystems caused by the full range of invasive species, terrestrial and aquatic.
Fei et al. and Weed, Ayers, and Hicke (2013) also support the finding that old, large trees are the most important trees with regard to carbon storage. This understanding leads them to conclude that the most damaging non-native pests are the emerald ash borer, Dutch elm disease fungi, beech bark disease, and hemlock woolly adelgid. As I pointed out in earlier blogs, other large trees, e.g., American chestnut and several of the white pines, were virtually eliminated from much of their historical ranges by non-native pathogens decades ago. These same large, old, trees also maintain important aspects of biological diversity.
It is true that not all tree species are killed by any particular pest. Some tree genera or species decrease while others thrive, thus altering the species composition of the affected stands (Weed, Ayers, and Hicke). This mode of protection is being undermined by the proliferation of insects and pathogens that cumulatively attack ever more tree taxa. And while it is true that some of the carbon storage capacity lost to pest attack will be restored by compensatory growth in unaffected trees, this faster growth is delayed by as much as two or more decades after pest invasions begin (Fei et al.).
ash forest after EAB infestation; Photo by Nate Siegert, USFS
Still, despite the rapid rise of destructive tree pests and disease outbreaks, scientists cannot yet resolve critical aspects of pathogens’ ecological impacts or relationship to climate change. Gougherty notes that numerous tree diseases have been linked to climate change or are predicted to be impacted by future changes in the climate. However, various studies’ findings on the effects of changes in moisture and precipitation are contradictory. Wu reports that his study of ash decline in a forest in Oxfordshire found that climate change will have a very small positive impact on disease severity through increased pathogen virulence. Weed, Ayers, and Hicke go farther, making the general statement that despite scientists’ broad knowledge of climate effects on insect and pathogen demography, they still lack the capacity to predict pest outbreaks under climate change. As a result, responses intended to maintain ecosystem productivity under changing climates are plagued by uncertainty.
Clarifying how disease systems are likely to interact with predicted changes in specific characteristics of climate is important — because maintaining carbon storage levels is important. Quirion et al. (2021) estimate that, nation-wide, native and non-native pests have decreased carbon sequestration by live forest trees by at least 12.83 teragrams carbon per year. This equals approximately 9% of the contiguous states’ total annual forest carbon sequestration and is equivalent to the CO2 emissions from more than 10 million passenger vehicles driven for one year. Continuing introductions of new pests, along with worsening effects of native pests associated with climate change, could cause about 30% less carbon sequestration in living trees. These impacts — combined with more frequent and severe fires and other forest disturbances — are likely to negate any efforts to improve forests’ capacity for storing carbon.
Understanding pathogens’ interaction with their hosts is intrinsically complicated. There are multiple biological and environmental factors. What’s more, each taxon adapts individually to the several environmental factors. Wu says there is no general agreement on the relative importance of the various environmental factors. The fact that most forest diseases are not detected until years after their introduction also complicates efforts to understand factors affecting infection and colonization.
The fungal-caused ash decline in Europe is a particularly alarming example of the possible extent of such delays. According to Wu, when the disease was first detected – in Poland in 1992 – it had already been present perhaps 30 years, since the 1960s. Even then, the causal agent was not isolated until 2006 – or about 40 years after introduction. The disease had already spread through about half the European continent before plant health officials could even name the organism. The pathogen’s arrival in the United Kingdom was not detected until perhaps five years after its introduction – despite the country possessing some of the world’s premier forest pathologists who by then (2012) knew what they to look for.
Clearly, improving scientific understanding of forest pathogens will be difficult. In addition, effective policy depends on understanding the social and economic drivers of trade, development, and political decisions are primary drivers of the movement of pathogens. Wu calls for collaboration of ecologists, geneticists, earth scientists, and social scientists to understand the complexity of the host-pathogen-surrounding system. Bringing about this new way of working and obtaining needed resources will take time – time that forests cannot afford.
However, Earth’s forests are under severe threat now. Preventing their collapse depends on plant health officials integrating recognition of these difficulties into their policy formulation. It is time to be realistic: develop and implement policies that reflect the true level of threat and limits of current science.
Background: Rising Numbers of Introductions
Gougherty’s analysis of rising detections of emerging tree diseases found little evidence of saturation globally – in accord with the findings of Seebens et al. (2017) regarding all taxa. Relying on data for 24 tree genera, nearly all native to the Northern Hemisphere, Gougherty found that the number of new pests attacking these tree genera are doubling on average every 11.2 years. Disease accumulation is increasing rapidly in both regions where hosts are native and where they are introduced, but more rapidly in trees’ native ranges.This finding is consistent with most new diseases arise from introductions of pathogens to naïve hosts.
Gougherty says his estimates are almost certainly underestimates for a number of reasons. Countries differ in scientific resources and their scientists’ facility with English. Scientists are more likely to notice and report high-impact pathogens and those in high-visibility locations. Where national borders are closer, e.g., in Europe, a minor pest expansion can be reported as “new” in several countries. New pathogens in North America appear to occur more slowly, possibly because the United States and Canada are very large. He suggests that another possible factor is the U.S. (I would add Canada) have adopted pest-prevention regulations that might be more effective than those in place in other regions. (See my blogs and the Fading Forest reports linked to below for my view of these measures’ effectiveness.)
ash dieback in the UK
Wu notes that reports of tree pathogens in Europe began rising suddenly after the 1980s. He cites the findings by Santini et al. (2012) that not only were twice as many pathogens detected in the period after 1950 than in the previous 40 years, the region of origin also changed. During the earlier period, two-thirds of the introduced pathogens came from temperate North America. After 1950, about one-third of previously unknown disease agents were from temperate North America. Another one-third was from Asia. By 2012, more than half of plant infectious diseases were caused by introduction of previously unknown pathogens.
What is to be done?
Most emerging disease agents do not have the same dramatic effects as chestnut blight in North America, ash dieback in Europe, or Jarrah dieback in Australia. Nevertheless, as Gougherty notes, their continued emergence in naïve biomes increases the likelihood of especially damaging diseases emerging and changing forest community composition.
Gougherty calls for policies intended to address both the agents being introduced through trade, etc., and those that emerge from shifts in virulence or host range of native pathogens or changing environmental conditions. In his view, stronger phytosanitary programs are not sufficient.
Wu recommends enhanced monitoring of key patterns of biodiversity and ecosystem functioning, He says these studies should focus on the net outcome of complex interactions. Wu also calls for increasing understanding of key “spillover” effects – outcomes that cannot be currently assessed but might impact the predicted outcome. He lists several examples:
the effects of drought–disease interactions on tree health in southern Europe,
interaction between host density and pathogen virulence,
reproductive performance of trees experiencing disease,
effect of secondary infections,
potential for pathogens to gain increased virulence through hybridization.
potential for breeding resistant trees to create a population buffer for saving biological diversity. Wu says his study of ash decline in Oxfordshire demonstrates that maintaining a small proportion of resistant trees could help tree population recovery.
Quirion et al. provide separate recommendations with regard to native and introduced pests. To minimize damage from the former, they call for improved forest management – tailored to the target species and the environmental context. When confronting introduced pests, however, thinning is not effective. Instead, they recommend specific steps to minimize introductions via two principal pathways, wood packaging and imports of living plants. In addition, since even the most stringent prevention and enforcement will not eliminate all risk, Quirion et al. advocate increased funding for and research into improved strategies for inspection, early detection of new outbreaks, and strategic rapid response to newly detected incursions. Finally, to reduce impacts of established pests, they recommend providing increased and more stable funding for classical biocontrol, research into technologies such as sterile-insect release and gene drive, and host resistance breeding.
USDA HQ
Remember: reducing forest pest impacts can simultaneously serve several goals—carbon sequestration, biodiversity conservation, and perpetuating the myriad economic and societal benefits of forests. See Poland et al. and the recent IUCN report on threatened tree species.
SOURCES
Barrett, T.M. and G.C. Robertson, Editors. 2021. Disturbance and Sustainability in Forests of the Western United States. USDA Forest Service Pacific Northwest Research Station. General Technical Report PNW-GTR-992. March 2021
Clark, P.W. and A.W. D’Amato. 2021. Long-term development of transition hardwood and Pinus strobus – Quercus mixedwood forests with implications for future adaptation and mitigation potential. Forest Ecology and Management 501 (2021) 119654
Fei, S., R.S. Morin, C.M. Oswalt, and A.M. 2019. Biomass losses resulting from insect and disease invasions in United States forests. Proceedings of the National Academy of Sciences. www.pnas.org/cgi/doi/10.1073/pnas.1820601116
Gougherty AV (2023) Emerging tree diseases are accumulating rapidly in the native and non-native ranges of Holarctic trees. NeoBiota 87: 143–160. https://doi.org/10.3897/neobiota.87.103525
Lovett, G.M., C.D. Canham, M.A. Arthur, K.C. Weathers, and R.D. Fitzhugh. 2006. Forest Ecosystem Responses to Exotic Pests and Pathogens in Eastern North America. BioScience Vol. 56 No. 5 May 2006
Lovett, G.M., M. Weiss, A.M. Liebhold, T.P. Holmes, B. Leung, K.F. Lambert, D.A. Orwig, F.T. Campbell, J. Rosenthal, D.G. MCCullough, R. Wildova, M.P. Ayres, C.D. Canham, D.R. Foster, S.L. Ladeau, and T. Weldy. 2016. Nonnative forest insects and pathogens in the United States: Impacts and policy options. Ecological Applications, 26(5), 2016, pp. 1437-1455
Poland, T.M., Patel-Weynand, T., Finch, D., Miniat, C. F., and Lopez, V. (Eds) (2019), Invasive Species in Forests and Grasslands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector. Springer Verlag.
Quirion, B.R., G.M. Domke, B.F. Walters, G.M. Lovett, J.E. Fargione, L. Greenwood, K. Serbesoff-King, J.M. Randall, and S. Fei. 2021 Insect and Disease Disturbance Correlate With Reduced Carbon Sequestration in Forests of the Contiguous US. Front. For. Glob. Change 4:716582. [Volume 4 | Article 716582] doi: 10.3389/ffgc.2021.716582
Weed, A.S., M.P. Ayers, and J.A. Hicke. 2013. Consequences of climate change for biotic disturbances in North American forests. Ecological Monographs, 83(4), 2013, pp. 441–470
Wu, H. 2023/24. Modelling Tree Mortality Caused by Ash Dieback in a Changing World: A Complexity-based Approach MSc/MPhil Dissertation Submitted August 12, 2024. School of Geography and the Environment, Oxford University.
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at https://treeimprovement.tennessee.edu/
Platyperigea kadenii — one of the moth species that feeds on native plant species introduced recently to Great Britain. Photo by Tony Morris via Flickr
Will phytosanitary agencies and the international system respond to continuing introductions of non-native species?
A new study confirms that introductions of insects continue apace, links this pattern to the horticultural trade, and examines the role of climate change in facilitating introductions. This study focuses on moths introduced to the United Kingdom (Hordley et al.; full citation at the end of the blog). The study sought to detect any trends in numbers of species establishing and the relative importance of natural dispersal vs. those assisted – intentionally or inadvertently – by human activities.
The authors determined that moths continue to be introduced by both processes; there is no sign of “saturation”. This finding agrees with that of Seebens and 44 others (2017; citation below), which analyzed establishments of all types of non-native species globally. The British scientists found that rapidly increasing global trade is the probable driver of the recent acceleration of human-assisted introductions. They emphasize the horticultural trade’s role specifically. Climate change might play a role in facilitating establishment of species entering the UK via human activities.
Hordley et al. found that long-term changes in climate, not recent rapid anthropogenic warming, was important in facilitating introductions of even those moth species that arrived without human assistance. As they note, temperatures in Great Britain have been rising since the 17th Century. These changes in temperature have probably made the British climate more suitable for a large number of Lepidoptera. The data show that the rate of natural establishments began rising in the 1930s, 60 years before anthropogenic changes in temperatures became evident. Hordley et al. point out that an earlier study that posited a more significant role for climate change did not distinguish between insect species which have colonized naturally and those benefitting from human assistance.
The authors expect introductions to continue, spurred by ongoing environmental and economic changes. Fortunately, very few of the introduced moths had any direct or indirect negative impacts. (The box-tree moth (Cydalima perspectalis) is the exception. [Box-tree moth is also killing plants in North America.]
boxtree moth; photo by Tony Morris via Flickr
Still, they consider that introductions pose an ongoing potential risk to native biodiversity and related human interests. Therefore, they advocate enhanced biosecurity. Specifically, they urge improved monitoring of natural colonizations and regulation of the horticultural trade.
Hordley et al. estimated the rate of establishment during the period 1900 – 2019 for (i) all moth species; (ii) immigrants (i.e., those introduced without any human assistance); (iii) immigrants which feed on native hosts; (iv) immigrants which feed on non-native hosts; (v) adventives (i.e., species introduced with human assistance); (vi) adventives which feed on native hosts; and (vii) adventives which feed on NIS hosts.
Their analysis used data on 116 moth species that have become established in Great Britain since 1900. Nearly two-thirds of these species – 63% – feed on plant species native to Great Britain; 34% on plant species that have been imported – intentionally or not. Data were lacking on the hosts of 3 species.
Considering the mode of introduction, the authors found that 67% arrived through natural colonization; 33% via human assistance. Sixty-nine percent of the 78 species that were introduced through natural processes (54 species) feed on plant species native to Great Britain; 31% (24 species) feed on non-native plants. Among the 38 species whose introduction was assisted by human activities, one-half (19 species) feed on native plant species; 42% (16 species) feed on introduced hosts.
Regarding trends, they found that when considering all moth species over the full period, 21.5% more species established in each decade than in the previous decade. This average somewhat obscured the startling acceleration of introductions over time: one species was reported as established in the first decade (1900–1909) compared to 18 species in the final decade (2010–2019).
The rate of introduction for all immigrant (naturally introduced) species was 22% increase per decade. Considering immigrant species that feed on native plants, the rate of establishment was nearly the same – 23% increase per decade – when averaged over the 120-year period. However, a more detailed analysis demonstrated that these introductions proceeded at a steady rate until 1935, then accelerated by 11% per decade thereafter. In contrast, immigrants that feed on non-native plants have maintained a steady rate of increasing establishments – 13% per decade since 1900.
Adventive species (those introduced via human assistance) increased by 26% per decade. The data showed no signs of saturation. The rates of introduction were similar for adventives that feed on both native plants (22%) and non-native hosts (26%). Again, additional analysis demonstrated a break in rates for adventives that feed on native hosts. The rate was steady until the 1970s, then significantly increased during the years up to 2010. (The scientists dropped data from the final decade since lags in detection might artificially suppress that number.)
In summary, Hordley et al. found no significant differences in trends between
the number of species that established naturally (20%) vs. adventives (26%).
immigrant or adventive species that feed on native vs. non-native hosts.
The authors discuss the role of climate change facilitating bioinvasion by spurring natural dispersal, changing propagule pressure in source habitats, changing the suitability of receiving habitat, and changing in pathways for natural spread, e.g., altered wind and ocean currents. They recognize that the two modes of colonization – adventives and immigrants – can interact. They stress, however, that the two colonization modes require different interventions.
Although their findings don’t support the premise that a surge of natural colonizers has been prompted by anthropogenic warming, Hordley et al. assert that climate clearly links to increased moth immigration to Britain and increased probability of establishment. They note that even so assisted, colonists still must overcome both the natural barrier of the English Channel and find habitats that are so configured as to facilitate breeding success. They report that source pools do not appear to be depleted — moth species richness of neighboring European countries greatly exceeds that in Great Britain.
I would have liked to learn what factors they think might explain the acceleration in both natural and human-assisted introductions of species that feed on plant species native to Great Britain. In 2023 I noted that scientists have found that numbers of established non-native insect species are driven primarily by diversity of plants – both native and non-indigenous.
Hordley et al. assert that Great Britain has advantages as a study location because as a large island separated from continental Europe by the sea – a natural barrier – colonization events are relatively easy to detect. However the English Channel is only 32 km across at its narrowest point. I wonder, whether this relatively narrow natural barrier might lead to a misleadingly large proportion of introduced species being natural immigrants. I do agree with the authors that moths are an appropriate focal taxon because they are sensitive to climate and can be introduced by international trade. Furthermore, Britain has a long tradition of citizen scientists recording moth sightings, so trends can be assessed over a long period.
Hordley et al. stress that they measured only the temporal rate of new species’ establishments, not colonization pressure or establishment success rate. They had no access to systematic data regarding species that arrived but failed to establish. Therefore, they could not deduce whether the observed increase in establishment rates are due to:
(1) more species arriving—due either to climate-driven changes in dispersal or to accessibility of source pools; or
(2) higher establishment success due to improved habitat and resource availability; or
(3) both.
Hordley et al. noted two limitations to their study. First, they concede that there is unavoidably some subjectivity in classifying each species as colonizing naturally or with human assistance. They tried to minimize this factor by consulting two experts independently and including in the analysis only those species on which there was consensus.
Second, increases in detection effort and effectiveness might explain the recent increases in establishment rates. They agree that more people have become “citizen scientists” since 1970. Also, sampling techniques and resources for species identification have improved considerably. They note, however, that Seebens et al. (2018) tested these factors in their global assessment and found little effect on trends.
Hordley et al. believe that they have addressed a third possible limitation – the lag between introduction and detection – by running their analyses both with and without data from final decade (2010-2019). The results were very similar qualitatively.
SOURCE
Hordley, L.A., E.B. Dennis, R. Fox, M.S. Parsons, T.M. Davis, N.A.D. Bourn. 2024. Increasing rate of moth species establishment over 120 years shows no deceleration. Insect Conserv. Divers. 2024;1–10. DOI: 10.1111/icad.12783
Seebens, H. et al. 2017. No saturation in the accumulation of alien species worldwide. Nature Communications. January 2017. DOI: 10.1038/ncomms14435
Seebens, H. et al. 2018. Global rise in emerging IAS results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences. www.pnas.org/cgi/doi/10.1073/pnas.1719429115
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at https://treeimprovement.tennessee.edu/
Research scientists in the USFS Northern Region (Region 9) – Maine to Minnesota, south to West Virginia and Missouri – continue to be concerned about regeneration patterns of the forest and the future productivity of northern hardwood forests.
The most recent study of which I am aware is that by Stern et al. (2023) [full citation at the end of this blog]. They sought to determine how four species often dominant in the Northeast (or at least in New England) might cope with climate change. Those four species are red maple (Acer rubrum), sugar maple (Acer saccharum), American beech (Fagus grandifolia), and yellow birch (Betula alleghaniensis). The study involved considerable effort: they examined tree ring data from 690 dominant and co-dominant trees on 45 plots at varying elevations across Vermont. The tree ring data allowed them to analyze each species’ response to several stressors over the 70-year period of 1945 to 2014.
In large part their findings agreed with those of studies carried out earlier, or at other locations. As expected, all four species grew robustly during the early decades, then plateaued – indicative of a maturing forest. All species responded positively to summer and winter moisture and negatively to higher summer temperatures. Stern et al. described the importance of moisture availability in non-growing seasons – i.e., winter – as more notable.
snow in Vermont; Putnypix via Flickr
The American Northeast and adjacent areas in Canada have already experienced an unprecedented increase of precipitation over the last several decades. This pattern is expected to continue or even increase under climate change projections. However, Stern et al. say this development is not as promising for tree growth as it first appears. The first caveat is that winter snow will increasingly be replaced by rain. The authors discuss the importance of the insulation of trees’ roots provided by snow cover. They suggest that this insulation might be particularly necessary for sugar maple.
The second caveat is that precipitation is not expected to increase in the summer; it might even decrease. Their data indicate that summer rainfall – during both the current and preceding years – has a significant impact on tree growth rates.
Stern et al. also found that the rapid rise in winter minimum temperatures was associated with slower growth by sugar maple, beech, and yellow birch, as well as red maple at lower elevations. Still, temperature had less influence than moisture metrics.
Stern et al. discuss specific responses of each species to changes in temperatures, moisture availability, and pollutant deposition. Of course, pollutant levels are decreasing in New England due to implementation of provisions of the Clean Air Act of 1990.
They conclude that red maple will probably continue to outcompete the other species.
In their paper, Stern et al. fill in some missing pieces about forests’ adaptation to the changing climate. I am disappointed, however, that these authors did not discuss the role of biotic stressors, i.e., “pests”.
They do report that growth rates of American beech increased in recent years despite the prevalence of beech bark disease. They note that others’ studies have also found an increase in radial growth for mature beech trees in neighboring New Hampshire, where beech bark disease is also rampant.
For more specific information on pests, we can turn to Ducey at al. – also published in 2023. These authors expected American beech to dominate the Bartlett Experimental Forest (in New Hampshire) despite two considerations that we might expect to suppress this growth. First, 70-90% of beech trees were diseased by 1950. Second, managers have made considerable efforts to suppress beech.
Stern et al. say specifically that their study design did not allow analysis of the impact of beech bark disease. I wonder at that decision since American beech is one of four species studied. More understandable, perhaps, is the absence of any mention of beech leaf disease. In 2014, the cutoff date for their growth analysis, beech leaf disease was known only in northeastern Ohio and perhaps a few counties in far western New York and Pennsylvania. Still, by the date of publication of their study, beech leaf disease was recognized as a serious disease established in southern New England.
counties where beech leaf disease has been confirmed
Eastern hemlock (Tsuga canadensis) and northern red oak (Quercus rubra) are described as common co-occurring dominant species in the plots analyzed by Stern et al. Although hemlock woolly adelgid has been killing trees in southern Vermont for years, Stern et al. did not discuss the possible impact of that pest on the forest’s regeneration trajectory. Nor did they assess the possible effects of oak wilt, which admittedly is farther away (in New York (& here) and in Ontario, Canada, west of Lake Erie).
In contrast, Ducey at al. (2023) did discuss link to blog 344 the probable impact of several non-native insects and diseases. In addition to beech bark disease, they addressed hemlock woolly adelgid, emerald ash borer, and beech leaf disease.
Non-native insects and pathogens are of increasing importance in our forests. To them, we can add overbrowsing by deer, proliferation of non-native plants, and spread of non-native earthworms. There is every reason to think the situation will only become more complex. I hope forest researchers will make a creative leap – incorporate the full range of factors affecting the future of US forests.
I understand that such a more integrated, holistic analysis might be beyond any individual scientist’s expertise or time, funding, and constraints of data availability and analysis. I hope, though, that teams of collaborators will compile an overview based on combining their research approaches. Such an overview would include human management actions, climate variables, established and looming pest infestations, etc. I hope, too, that these experts will extrapolate from their individual, site-specific findings to project region-wide effects.
Some studies have taken a more integrative approach. Reed, Bronson, et al. (2022) studied interactions of earthworm biomass and density with deer. Spicer et al. (2023) examined interactions of deer browsing and various vegetation management actions. Hoven et al. (2022) considered interactions of non-native shrubs, tree basal area, and forest moisture regimes.
Stern, R.L., P.G. Schaberg, S.A. Rayback, C.F. Hansen, P.F. Murakami, G.J. Hawley. 2023. Growth trends and environmental drivers of major tree species of the northern hardwood forest of eastern North America. J. For. Res. (2023) 34:37–50 https://doi.org/10.1007/s11676-022-01553-7
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at https://treeimprovement.tennessee.edu/
Greater prairie chicken – denizen of the Tallgrass Prairie; NPS photo
In August 2022 I blogged about unwise planting of trees in New Zealand as a warning about rushing to ramp up tree planting as one solution to climate change.
New Zealand has adopted a major afforestation initiative (“One Billion Trees”). This program is ostensibly governed by a policy of “right tree, right place, right purpose”. However, Bellingham et al. (2022) [full citation at end of blog] say the program will probably increase the already extensive area of radiata pine plantations and thus the likelihood of exacerbated invasion. They say the species’ potential invasiveness and its effects in natural ecosystems need more thorough consideration given that the pines
have already invaded several grasslands and shrublands;
are altering primary succession;
are climatically suitable to three-quarters of New Zealand’s land
North American Tallgrass Prairie; photo by National Park Service
A new study by Moyano et al. [full citation at the end of the blog] tackles head-on the question of whether widespread planting of trees to counter climate change makes sense. They focus on plantings in naturally treeless ecosystems, i.e., grasslands, shrublands and wetlands. They find that:
relying on tree planting to significantly counter carbon change in the absence of reducing carbon emissions would require converting more than a third of Earth’s of global grasslands into tree plantations.
Reforestation of areas previously forested has the potential to produce a net increase in carbon sequestration more than twice as great as can be done by afforesting unforested areas.
Moyano et al. conclude that conservation and restoration of degraded forests should be prioritized over afforestation projects. This recommendation confirms points made in an earlier blog. Then I reported that Calders et al. (2022) said temperate forests account for ~14% of global forest carbon stocks in their biomass and soil. They worried that ash dieback link will kill enough large trees that European temperate deciduous forests will become a substantial carbon source, rather than sink, in the next decades. In my blog I pointed out that other tree taxa that also formerly grew large – elms, plane trees, and pines – have either already been decimated by non-native insects and pathogens, or face severe threats now.
Moyano et al. also point out that naturally treeless ecosystems are often at risk to a variety of threats, they provide numerous ecosystem services, and they should be conserved.
Loss of Biodiversity
Tree planting in naturally treeless areas changes ecosystems at the landscape scale. Moyano et al. say these changes inevitably degrade the natural biodiversity of the affected area. For example, grasslands provide habitats for numerous plant and animal species and deliver a wide range of ecosystem services, including provisioning of forage for livestock, wild food and medicinal herbs, + recreation and aesthetic value. Already 49% of Earth’s grassland area is degraded. Restoration of herbaceous plant diversity in old growth grasslands requires at least 100 years.
These obvious impacts are not the only losses caused by conversion of treeless areas to planted forests.
Ambiguous Carbon Sequestration Benefits
Grasslands store 34% of the terrestrial carbon stock primarily in the soil. Tree planting in grasslands can result in so much loss of carbon stocks in the soil that it completely offsets the increment in carbon sequestration in tree biomass. The underlying science is complicated so scientists cannot yet predict where afforestation will increase soil carbon and where it will reduce it. Important factors appear to be
Humid sites tend to lose less soil carbon loss than drier sites;
Soil carbon increases as the plantation ages;
Tree species: conifers either reduce soil carbon or have no effect; broadleaf species either increase soil carbon or have no effect.
Sites with higher initial soil carbon tend to lose more carbon during afforestation.
Afforestation has greater impacts on upper soil layers.
Moyano et al. assert that appropriate management of grasslands can provide low cost, high carbon gains: a potential net carbon sequestration of 0.35 Gt C/ year at a global level, which is comparable to the potential for carbon sequestration of afforestation in all suitable dryland regions (0.40 Gt C/year).
Changes in Albedo
Trees absorb more solar energy than snow, bare soil or other life forms (such as grasses) because they reflect less solar radiation (reduced albedo). Moyano et al. say the resulting warmer air above the trees might initially offset the cooling brought about by increased carbon sequestration in the growing trees’ wood. Only after decades does the increase in carbon sequestration compensate for the reduction in albedo and produce a cooling effect. Furthermore, they say, the eventual cooling effect that afforestation could create is slight, reducing the global temperature only 0.45°C by 2100 if afforestation was carried out across the total area actually covered by crops. As they note, replacing all crops by trees maintained to sequester carbon is highly unlikely.
Eucalyptus-pine plantation burned in Portugal; photo by Paolo Fernandez via Flickr
Increased fire severity
Planting trees in many treeless habitats – deserts, xeric shrublands, and temperate and tropical grasslands – increases fire intensity. This risk is exacerbated when managers choose to plant highly flammable taxa, e.g.,Eucalyptus.Already the fire risk is expected to increase due to climate change. These fires not only threaten nearby people’s well-being and infrastructure; they also release large portions of the carbon previously sequestered, thus undermining the purpose of the project. Moyano et al. note that the carbon stored in the soil of grasslands is better protected from fire.
Water supplies reduced
Afforestation changes the hydrological cycle because an increase in carbon assimilation requires an increase in evapotranspiration. The result at the local scale is decreased water yield and increased soil salinization and acidification. Water yield losses are greater when plantations are composed of broadleaf species. Moyano et al. point out that these water losses are more worrying in areas where water is naturally scarce, e.g., the American southwest, including southern California. On the other hand, increased evapotranspiration can enhance rain in neighboring areas through a redistribution of water at the regional scale and increased albedo through the formation of clouds.
Moyano et al. say planting trees also alters nutrient cycles. To my frustration, they don’t discuss this impact further.
Bioinvasion risk
Moyano et al. cite several experts as documenting a higher risk of bioinvasion associated with planting trees in naturally treeless systems. These invasions expose the wider landscapes to the impacts arising from tree plantations, e.g., increased plant biomass carbon sequestration, reduced soil carbon, reduced surface albedo, increased fuel loads and fuel connectivity, reduced water yield, and altered nutrient cycles. Even native ecosystems that are legally protected can be threatened. Thickets of invading trees can exacerbate some of the impacts listed above since the invading trees usually grow at higher densities. On a more positive side, invading stands of trees often are more variable in age; in this case, they can be more like a natural forest than are even-aged stands in plantations. Because of these complexities, the effect of tree invasions on ecosystem carbon storage becomes highly context dependent. This is rarely evaluated by scientists. See Lugo below.
Moyano et al. say woody plant invasions can exacerbate human health issues by providing habitat for wildlife hosts of important disease vectors, including mosquitoes and ticks. I ask whether plantations using unwisely chosen tree species might raise the same risks. They decry the minimal research conducted on this issue.
Assessing the tradeoffs
The goal is to remove CO2 from the atmosphere by fixing more carbon in plant biomass. Moyano et al. say careful consideration of projects’ potential impacts can minimize any negative consequences. An integrated strategy to address climate change should balance multiple ecological goals. Efforts to increase carbon storage should not compromise other key aspects of native ecosystems, such as biodiversity, nutrient and hydrological cycles, and fire regimes. First, they say, planners should avoid the obvious risks:
don’t plant fire-prone/flammable tree species; do adopt fuel- and fire-management plans.
don’t plant potentially invasive species.
don’t plant forests in vulnerable environments where negative impacts are likely.
In order to both minimize that certain risks will arise and ensure counter measures are implemented if they do, Moyano et al. suggest incorporating into carbon certification standards two requirements:
that soil carbon be measured throughout the whole soil depth.
that plantation owners be legally responsible for managing potential tree invasions.
The authors praise a new law in Chile, which prohibits planting monospecific tree plantations as a natural climate solution.
Furthermore, they advocate for regulators conducting risk analyses rather than accepting groundless assumptions about carbon storage and climate cooling effects.
Recognizing the uncertainty about some effects of introducing trees into naturally treeless areas, and interactions between these effects and the key role of the ecological context, Moyano et al. call for increased study of plant ecology. They specify research on the above-mentioned highly variable impacts on soil carbon as well as albedo.
Role of NIS trees in sequestering /storing carbon in U.S.
According to Lugo et al. (2022; full citation at the end of this blog), in the Continental United States, non-indigenous tree species contribute a tiny fraction of the forests’ carbon storage at the current time: about 0.05%. This is because non-native trees are widely scattered; while individuals can be found in more than 61% of forested ecosections on the continent, they actually occupy only 2.8% of the forested area.
However, non-native tree species are slowly increasing in both their area and their proportion of species in specific stands. Consequently, they are increasingly important in the forest’s carbon sink – that is, the amount of additional carbon sequestered between two points in time. In fact, non-native trees represent 0.5% of new carbon sequestered each year. This is ten times higher than their overall role in carbon storage. In other words, the invasive species play increasingly important ecosystem roles in the stands in which they occur.
neem tree – considered invasive in the Virgin Islands; photo by Miekks via Wikimedia
On the United States’ Caribbean and Pacific islands, non-native tree species are already much more common, so they are more important in carbon sequestration. On Puerto Rico, 22% of the tree species are non-native; link to blog 340 they accounted for 38% of the live aboveground tree carbon in forests. On the Hawaiian Islands, an estimated 29% of large trees and 63% of saplings or small trees are non-native. link to blog 339 Consequently, they store 39% of the mean plot area-weighted live aboveground tree carbon.
SOURCES
Bellingham, P.J., E.A. Arnst, B.D. Clarkson, T.R. Etherington, L.J. Forester, W.B. Shaw, R. Sprague, S.K. Wiser, and D.A. Peltzer. 2022. The right tree in the right place? A major economic tree species poses major ecological threats. Biol Invasions Vol.: (0123456789) https://doi.org/10.1007/s10530-022-02892-6
Calders, K., H. Verbeeck, A. Burt, N. Origo, J. Nightingale, Y. Malhi, P. Wilkes, P. Raumonen, R.G.H. Bunce, M. Disney. Laser scanning reveals potential underestimation of biomass carbon in temperate forest. Ecol Solut Evid. 2022;3:e12197. wileyonlinelibrary.com/journal/eso3
Lugo, A.E., J.E. Smith, K.M. Potter, H. Marcano Vega, and C.M. Kurtz. 2022. The Contribution of NIS Tree Species to the Structure and Composition of Forests in the Conterminous US in Comparison with Tropical Islands in the Pacific and Caribbean. USFS International Institute of Tropical Forestr. January 2022. General Technical Report IITF-54 https://doi.org/10.2737/IITF-GTR-54
Moyano, J., R.D. Dimarco, J. Paritsis, T. Peterson, D.A. Peltzer, K.M. Crawford, M.A. McCary,| K.T. Davis, A. Pauchard, and M.A. Nuñez. 2024. Unintended consequences of planting native and NIS trees in treeless ecosystems to mitigate climate change. Journal of Ecology. 2024;00:1-12
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm
U.S. Department of Agriculture headquarters; lets lobby these people! photo by Wikimedia
Twenty-three scientists based around the world published a Letter to the Editor titled “Overwhelming evidence galvanizes a global consensus on the need for action against Invasive Alien Species” It appears in the most recent edition of Biological Invasions (2024) 26:621–626.
The authors’ purpose is to draw attention to the release of a new assessment by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services’ (IPBES).
The report was issued in September 2023. It is described as the most comprehensive global synthesis of the current knowledge on the bioinvasion process and the impacts of invasive alien species (952 pages!). Its preparation took nearly a decade. Most important, it represents the first consensus among governments and scientists worldwide on the magnitude and extent of the threats that bioinvasions pose to nature, people, and the economy.
The proposed solutions are astoundingly broad and ambitious: transformation of how governments and societies perform. I don’t disagree! However, we need interim steps – “bites of the elephant.” In my view, the report falls short on providing these.
Our challenge: join others in bringing this analysis to decision-makers’ attention. Can we pull out information that will help persuade U.S. decision-makers – governmental and non-governmental – that the threat is both urgent and solvable? How do we more effectively advocate for the aggressive, science-based action that we all know is needed?
(I hope that the fact that the report was prepared under the auspices of the Convention on Biodiversity, to which the U.S. is not a party, does not intensify the challenge for us.)
Why we need to restructure the behavior of governments and societies
Bioinvasions are facilitated by policies, decision-making structures, institutions, and technologies that are almost always focused on achieving other goals. Species transport and introduction are driven by policies aimed at promoting economic growth – especially trade. Later stages of invasions, i.e., establishment and some spread, are accelerated by certain uses of land and sea plus climate change. For example, activities that fragment habitats or cause widespread habitat disturbance provide ready places for bioinvasions. Rarely are those who gain by such policies held accountable for the harms they produce via bioinvasions.
To address these unintended consequences, the IPBES report calls for “integrated governance.” Its authors want coordination of all policies and agencies that touch on the indirect drivers, e.g., conservation; trade; economic development; transport; and human, animal, and plant health. Policy instruments need to reinforce – rather than conflict with — strategic invasive species management across sectors and scales. This involves international agreements, national regulations, all governmental sectors, as well as industry, the scientific community, and ordinary people – including local communities and Indigenous Peoples.
The report also calls for establishment of open and inter-operable information systems. This improved access to information is critical for setting priorities; evaluating and improving regulations’ effectiveness; and reducing costs by avoiding duplication of efforts.
Critically important information that is often unspoken:
Indirect causes underlying the usual list of human activities that directly promote bioinvasions are the rapid rise of human population and even more rapid rise in consumption and global trade.
Biosecurity measures at international borders have not kept pace with the growing volume, diversity, and geographic origins of goods in trade.
Continuation of current patterns is expected to result in one-third more invasive species globally by 2050. However, this is an underestimate because today’s harms reflect the consequences of past actions – often from decades ago. Drivers of invasions are expected to grow in both volume and impact.
We can prevent and control invasive alien species – but that success depends on the availability of adequate, sustained resources, plus capacity building; scientific cooperation and transfer of technology; appropriate biosecurity legislation and enforcement; and engaging the full range of stakeholders. These require political will.
A major impact of bioinvasion is increased biotic homogenization (loss of biological communities’ uniqueness). This concerns us because we are losing the biotic heterogeneity that provides insurance for the maintenance of ecosystem functioning in the face of ongoing global change.
The IPBES study asserts that successfully addressing bioinvasions can also strengthen the effectiveness of policies designed to respond to other drivers, especially programs addressing conservation of biological diversity, ensuring food security, sustaining economic growth, and slowing climate change. All these challenges interact. The authors affirm that evidence-based policy planning can reflect the interconnectedness of the drivers so that efforts to solve one problem do not exacerbate the magnitude of others and might even have multiple benefits.
More Key Findings
Overall, 9% (3,500) of an estimated 37,000 alien species established in novel environments are invasive (those for which scientists have evidence of negative impacts). Proportions of invasives is high among many taxonomic groups: 22% of all 1,852 alien invertebrates; 14% of all 461 alien vertebrates; 11% of all 141 alien microbes; and 6% of all 1,061 alien plants. (The discussion of probable undercounts relates to aquatic systems and certain geographic regions. However, I believe these data are all undermined by gaps in studies.)
Invasive alien species – solely or in combination with other drivers – have contributed to 60% of recorded global extinctions. Invasive species are the only driver in 16% of global animal and plant extinctions. Some invasive species have broader impacts, affecting not just individual species but also communities or whole ecosystems. Sometimes these create complexoutcomes that push the system across a threshold beyond which ecosystem restoration is not possible. (No tree pests are listed among the examples.)
dead whitebark pine in Glacier National Park; photo by National Park Service
The benefits that some non-native – even invasive – species provide to some groups of people do not mitigate or undo their negative impacts broadly, including to the global commons. The report authors note that beneficiaries usually differ from those people or sectors that bear the costs. The authors cite many resulting inequities.
There are insufficient studies of, or data from, aquatic systems, and from Africa; Latin America and the Caribbean; and parts of Asia.
The number of alien species is rising globally at unprecedented and increasing rates. There are insufficient data specifically on invasive species, but they, too, are thought to be rising at similar rates.
Horticulure is a major pathway for introducing 46% of invasive alien plant species worldwide.
Regarding invasive species’ greater impact on islands,the IPBES report mentions brown tree snakes on Guam and black rats on the Galapagos Islands. It also notes that on more than a quarter of the world’s islands, the number of alien plants exceeds the total number of native ones. See my blogs on non-native plants on Hawai`i and Puerto Rico. In addition, I have posted several blogs regarding disease threats to rare bird species in Hawai`. The IPBES report does not mention these.
Where the Report Is Weak: Interim Steps
The report endorses adoption of regulated species (“black”) lists.
The report emphasizes risk analysis of species. Unfortunately IPBES’ analysis was completed before publication of the critique of risk analysis methods by Raffa et al. ( (2023) (see references). However, we must take the latter into consideration when deciding what to advocate as U.S. policy.
The report authors call for more countries to adopt national legislation or regulations specifically on preventing and controlling invasive species. (They note that 83% of countries lack such policies). They also list the many international agreements that touch on invasive species-relevant issues. However, Raffa et al. found that the number of such agreements to which a country is a party bears no relationship to the numbers of alien species detected at its border or established on its territory.
The challenge to risk assessment posed by multiple sources of uncertainty can be managed by recognizing, quantifying, and documenting the extent of that uncertainty.
Beech leaf disease – one of many non-native pests that were unknown before introduction to a naive ecosystem. Photo by Jennifer Koch, USDA Forest Service
I appreciate the report’s emphasis on the importance of public awareness and engagement, but I thought the discussion of effective campaigns lacked original ideas.
The report did not fulfill its own goal of fully exploring unappreciated impacts of policies in its discussion of habitat fragmentation. For example, the report notes that grazing by feral alien ungulates facilitates the spread of invasive alien plant species. However, it does not mention the similar impact by livestock grazing (Molvar, et al. 2024).
SOURCES
Molvar, E.M., R. Rosentreter, D. Mansfield, and G.M. Anderson. 2024. Cheat invasions: History, causes, consequences, and solutions. Hailey, Idaho: Western Watersheds Project, 128 pp.
Raffa, K.F., E.G. Brockerhoff, J-C. GRÉGOIRE, R.C. Hamelin, A.M. Liebhold, A. Santini, R.C. Venette, and M.J. Wingfield. 2023. Approaches to forecasting damage by invasive forest insects and pathogens: a cross-assessment. BioScience 85 Vol. 73 No. 2 (February 2023) https://academic.oup.com/bioscience
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm
‘i‘iwi (Drepanis coccinea) – formerly very common from low to high elevations; photo by James Petruzzii_U
The endangered honeycreepers (birds) of Hawaiian forests are receiving the attention they deserve – and desperately need. There is good news! Promising and significant efforts are under way, matched to a recent strategic plan. However, it is too early to know their results.
Nearly two and a half years ago, I blogged about efforts by a multi-agency consortium (“Birds, Not Mosquitoes” ). It was working to suppress populations of non-native mosquitoes, which vector two lethal diseases: avian malaria (Plasmodium relictum) and avian pox virus (Avipoxvirus). A single bite from an infected mosquito is enough to weaken and kill birds of some species, e.g., the ‘i‘iwi.
The threats from these diseases – and their spread to higher elevations as mosquitoes respond to climate change – pile on top of – other forms of habitat loss and inroads by other invasive species. All of the 17 species of honeycreeper that have persisted until now are listed as endangered or threatened under the federal Endangered Species Act. Four are in danger of extinction within as little as 1 – 2 years. These are ‘Akeke`e (Loxops caeruleirostris), ‘Akikiki (Oreomsytis bairdi)), Kiwikiu (Maui parrotbill, (Pseudonestor xanthophrys), and `Akohekohe (Palmeria dolei).
Akikiki; photo by Carter Atkinson, USGS
All these bird species are endemic to the Hawaiian archipelago — found nowhere else on Earth. They are already remnants. Nearly 80 bird species have gone extinct since people first colonized the Hawaiian Islands 1,500 years ago. Eight of these extinctions were recognized in October 2021. Extinction of the final cohort would compromise the integrity of unique ecosystems as well as the Islands’ natural and cultural heritage.
I rejoice to report that the federal government has responded to the crisis. In late 2022 several Interior Department agencies adopted a multiagency Strategy for Preventing the Extinction of Hawaiian Forest Birds. The strategy specifies responsibilities for the key components of the program. These include: a) planning and implementing landscape-level mosquito control using Incompatible Insect Technique (IIT); b) translocating birds to higher elevation sites on other Hawaiian islands; c) establishing captive populations of at-risk birds; and d) developing next-generation tools that increase the scope or efficacy of these actions. All these activities are being developed and conducted through intensive consultation with Native Hawaiians.
On August 8, 2023, the Secretary of Interior announced the allocation of $15,511,066 for conservation and recovery efforts for Hawaiian forest birds. About $14 million of the total was from the Bipartisan Infrastructure Law (Public Law 117-58). The funds are being channelled primarily through the U.S. Fish and Wildlife Service (FWS) ($7.5 million) and the National Park Service (NPS) ($6 million). Other sources of funding are the “State of the Birds” Program (FWS – $963,786); the national-level competitive Natural Resource grants program (NPS – $450,000); and the Biological Threats Program of the U.S. Geological Survey (USGS – $100,000).
What Is Under Way
I do worry continuing these efforts will be harder once their funding is subject to annual appropriations. However, they are a good start!
Steps have been taken on each of the four key component of the Strategy for Preventing the Extinction of Hawaiian Forest Birds:
a) Planning and implementing landscape-level mosquito control using Incompatible Insect Technique (IIT – see below) to reduce the mosquito vector of avian malaria.
The Consortium has obtained all necessary state permits, regulatory approval of the approach by the U.S. Environmental Protection Agency, and done required consultations under the Endangered Species Act.
The Department of the Interior has funded a public-private partnership between the National parks and The Nature Conservancy (TNC) to develop, test, and carry out the first deployments of IIT. These occurred in May 2023 at high-elevation sites on the island of Maui. The next releases are planned for Kaua`i.
Consortium participants are carrying out the consultations and scientific preparations need to support the next deployment on the Big Island.
b) Translocating birds to higher elevation sites on the one island where they exist – Hawai`i.
Initial planning has begun to guide translocation of the endangered Kiwikiu (Maui parrotbill) and Akohekohe to higher-elevation, mosquito-free, habitats on the Big Island.
c) Establishing captive populations of the most at-risk species
To facilitate captive breeding of the four most endangered species, the two existing aviaries in Hawai`i need to be expanded. Space must be provided for at least 80 more birds. A contract has been signed for construction of this new aviary space.
d) Developing next-generation tools that increase the scope or efficacy of these actions.
Lab capacity has been expanded to monitor the effectiveness of IIT, as well as for developing next-generation mosquito control tools.
those who decide funding work here … & they work for us!!!!
The Incompatible Insect Technique (IIT) explained
The incompatible insect technique has been used successfully elsewhere to combat mosquitoes that transmit human diseases. Many insect taxa – including mosquitoes – harbor a naturally-occurring bacteria (Wolbachia). This bacterium has more than one strain or type. When a male mosquito with one type of Wolbachia mates with a female mosquito bearing a different, incompatible type, resulting eggs do not hatch. The IIT project releases male mosquitoes that have an incompatible strain of the bacterium than do local females. (Male mosquitoes do not bite animals seeking a blood meal, so releasing them does not increase the threat to either birds or people.) Implementation requires repeat treatment of sites at a cost of more than $1 million per site per year. It is hoped that this cost will fall with more experience.
Funding for the Strategy’s Four Components
As I noted above, much of the funding for these efforts has come from the Bipartisan Infrastructure Law (Public Law 117-58). Grants under this one-time statute are intended to cover project costs for perhaps five years. Other sources of funds are Congressional appropriations to Interior Department agencies under programs which presumably will continue to be funded in future years. These include the “State of the Birds” program; Endangered Species Act (ESA) implementation, especially its §6 Cooperative Endangered Species Conservation Fund; and State Wildlife Grants administered by the U.S. Fish and wildlife Service. However, funding under these programs is never guaranteed and competition is fierce. I hope participants – and the rest of us! – can be effective in lobbying for future funds required to save Hawaii’s birds from extinction.
a) Deploying IIT
Over Fiscal Years 2017 – 2021 (ending September 2021), Interior Department agencies supported the IIT program by:
Providing $948,000 to the State of Hawai`i from “State of the Birds”, State Wildlife Grants, and Endangered Species Act (ESA) §6;
The U.S. Fish and Wildlife Service provided $545,000 plus staff time’
National Park Service provided $1.2 million for IIT preparations at Haleakala National Park and surrounding state and Nature Conservancy lands
U.S. Geological Survey provided about $7.05 million in research on Hawaiian forest birds, invasive mosquitoes, and avian malaria.
The State of Hawai’i allocated $503,000 and employee staff time.
In addition,
the National Fish and Wildlife Fund provided a total of $627,000 in grants to TNC and American Bird Conservancy for Wolbachia IIT.
TNC committed to supporting some of the initial costs to deploy Wolbachia IIT for the first site in Hawai`i through a contractor (see below)
American Bird Conservancy provided funding for coordination and public outreach.
In FY2022 (which ended in September 2022),
NPS provided $6 million for on-the-ground work on Maui, also development and initial production of Wolbachia IIT.
Interior Department Office of Native Hawaiian Relations provided in-kind services to engage with Native communities’ members
b) Moving endangered birds to mosquito-free areas at high elevations on the Big Island
This is planned to begin by 2030. Interior committed unspecified funds to planning and consultation with Native Hawaiians.
c) Rearing captive birds
FWS supports operation of the two existing aviaries through two funding channels: $700,000 annually provided directly to the aviaries, plus another $500,000 per year through ESA §6through the State of Hawai`i. The San Diego Zoo – which operates the aviaries — provides $600,000 – $800,000 per year in the form of in-kind services, staffing, veterinarians, and administrative support. Interior’s Office of Native Hawaiian Relations provided in-kind services to support to engagement with Native Hawaiian community members
d) Regarding exploration of “next-generation” mosquito control tools
The FWS provided $60,000 to a scientific laboratory to study precision-guided Sterile Insect Technique (pgSIT) tools to protect bird species threatened by avian malaria.
Funding for the portions of these programs dependent upon annual appropriations is uncertain. Current signs are promising: House and Senate bills to fund for the current year (Fiscal Year 2024) – which began in October 2023! – both support at least some aspects of the program. According to American Bird Conservancy, the Senate appropriations bill has allocated $2.5 million to parts of the program. According to the Committee report, the House appropriations bill allots $4.7 million to the State of the Birds program to respond to urgent needs of critically endangered birds. The report goes on to direct the FWS to “incorporate adaptation actions into new and revised recovery plans and recovery implementation strategies, such as with the mosquito vector of avian pox & malaria in the revised Hawaiian Forest Birds recovery plan. …” Per the report, the Appropriations Committee “continues to encourage the [NPS] to respond to the urgent landscape-scale needs of critically endangered forest birds with habitats in national parks.” The report then specifies species threatened by non-native mosquitoes carrying avian malaria and other pathogens. Finally, the report allocates $500,000 to the U.S. Geological Survey for research on the Hawaiian forest birds.
Meanwhile, the American Bird Conservancy is preparing to advocate for $20 million for FY25 through “State of the Birds” Activities and associated NPS and USGS programs. The details of this amount have not yet been laid out.
CISP will support this request and urges you to do so also. We will suggests ways to help when we know more.
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm