The Morton Arboretum Assesses U.S. Tree Genera at Risk

 

habitat of the Florida torreya tree; photo via Creative Commons

In August, the Morton Arboretum announced completion of a series of reports on the conservation status of major tree genera native to the continental United States. It is available here.  The series of reports provides individual studies on Carya, Fagus, Gymnocladus, Juglans, Pinus, Taxus, and selected Lauraceae (Lindera, Persea, Sassafras). (Links to the individual reports are provided at the principal link above.)  

The project was funded by the USDA Forest Service and the Institute of Museum and Library Services, The Morton Arboretum and Botanic Gardens Conservation International U.S.

Each report provides a summary of the ecology, distribution, and threats to species in the genus, plus levels of ex situ conservation efforts. The authors hope that the data in these reports will aid in setting conservation priorities and coordinating activities among stakeholders. The aim is to further conservation of U.S. keystone trees.

These reports are part of the overall “Global Tree Assessment: State of Earth’s Trees”  compiled under the auspices of Botanic Gardens Conservation International (BGCI) and IUCN SSC Global Tree Specialist Group. I discuss the global assessment in a separate blog to which I will link. The global report evaluates species’ status according to both the International Union of Conservation of Nature’s (IUCN) Red List and NatureServe. The process used is explained in each both the international and U.S. reports. For the U.S. overall, the global assessment identifies 1,424 species of tree, of which 342 (24%) are considered threatened. Hawai`i specifically is home to 241 endangered tree species (Megan Barstow, BGCI Conservation Officer, pers. comm.). See my blogs about threats to Hawaiian trees.

Quercus lobata (valley oak) at Jack London State Park, California

Like the global assessment, these individual studies of nine genera–carried out by the Morton Arboretum–are a monumental accomplishment. They vary in size and format. The report on oaks was completed first and is the most comprehensive. It is 220 pages, incorporating individual reports on 28 species of concern. The report on pines is 40 pages. It contains summary information and tables on all 37 pine species native to the United States, but lacks write-ups on individual species. The report on Lauracae is 25 pages; it evaluates the threat to five species in three genera from laurel wilt disease. The report on walnuts is 23 pages. It includes brief descriptions of six individual species, including butternut. The report on hickories (Carya spp.) is 20 pages.  It provides brief description of 11 species. The report on yews is 18 pages. It covers three species. The report on Fagus addresses the single species in the genus, American beech. It is 17 pages. The shortest report is on another single species, Kentucky coffeetree; it is 15 pages.

Coverage of Threats from Non-Native Insects and Diseases in the Morton Arboretum Reports

In keeping with my focus, I concentrated my review of these nine reports on their handling of threats from non-native insects and pathogens. Six of the reports make some reference to pests – although the discussion is not always adequate, in my view. There are puzzling failures to mention some pathogens.

Genera subject to minimal threats from pests (native or non-native) include the monotypic Kentucky coffeetree (Gymnocladus dioicus), whichis considered by the IUCN to be Vulnerable due habitat fragmentation, rarity on the landscape, and population decline.

A second such genus is Carya spp., the hickories. The entire genus is assessed by the IUCN as of Least Concern. The Morton study ranked two species, C. floridana and C. myristiciformis, as of conservation concern. 

Three evaluators – the IUCN, the Morton Arboretum, and Potter et al. (2019) – agree that one of the three U.S. yew species, Florida torreya (Taxus floridana or Torreya taxifolia), is Critically Endangered because of its extremely small range, low population, and deer predation. Indeed, Potter et al. (2019) ranked Florida torreya as first priority of all forest trees in the continental United States for conservation efforts. However, the Morton Arboretum analysis makes no mention of the canker disease reported by, among others, the U.S. Forest Service.

A third of the 28 oak (Quercus spp.) species considered to be of conservation concern per the Morton study criteria are reported to be threatened by non-native pests. Pest threats to oak species not considered to be of conservation concerned were not evaluated in the report.

The Morton report records 37 pine species (Pinus spp.) as native to the U.S. Native and introduced insects and pathogens are a threat to many, especially in the West.

Two reports – those on the Lauraceae and beech – focus almost exclusively on threats from non-native pests. The report on walnuts (Juglans spp.) divides its attention between non-native pests and habitat conversion issues. This approach comes into some question as a result of the recent decision by state plant health officials to that thousand cankers disease does not threaten black walnut (J. nigra) in its native range.

black walnut (J. nigra) photo by F.T. Campbell

Here I examine five of the individual genus reports in greater detail.

Oaks

The Morton report says that more than 200 oak species are known across North America, of which 91 are native in the United States. The study concludes that 28 of these native oaks are of conservation concern based on extinction risk, vulnerability to climate change, and low representation in ex situ collections. [The IUCN Red List recognizes 16 U.S. oak species as globally threatened with extinction.] Nearly all of the Morton’s report 28 species are confined to small ranges. In the U.S., regional conservation hotspots are in coastal southern California, including the Channel Islands; southwest Texas; and the southeastern states.

The summary opening section of the Morton report says 10 (36%) of the threatened oaks face a threat by a non-native pathogen. It admits that lack of information probably results in an underestimation of the pest risk. I found it difficult to confirm this overall figure by studying the detailed species reports because in some cases the threatening pathogen is not currently extant near the specific tree species’ habitat. I appreciate the evaluators’ concern about the potential for the pathogen, e.g., Phytophthora ramorum or oak wilt, to spread from its current range to vulnerable species growing on the other side of the continent. However, I wish the overview summary at the beginning of the report were clearer as to which species are currently being infected, which face a potential threat.

The report emphasizes the sudden oak death pathogen (SOD; Phytophthora ramorum), stating that it which currently poses a significant risk to wild populations of Q. parvula. However, the situation is more complex. As I note in my blog on threats to oaks, Q. parvula is divided into two subspecies. In the view of California officials, one, Q. p. var. shrevei, is currently threatened by SOD but the other, Q. p. var. parvula, (Santa Cruz Island oak) is currently outside the area infested by the pathogen. Perhaps the Morton Arboretum evaluators consider the potential risk to the second subspecies to be sufficient to justify stating that the pathogen poses a significant threat to the entire species; but I would appreciate greater clarity on this matter.

The report also mentions the potential threat to several rare oak species in the Southeast if SOD spreads there. While the Morton report rarely discusses species that have not been assessed as under threat, it does note that two species ranked as being of Least concern – coast live oak (Q. agrifolia) and California black oak (Q. kelloggii) – have been highly affected by SOD. 

The Fusarium disease vectored by the polyphagous and Kuroshio shot hole borers is mentioned as a threat to Engelmann (Q. engelmannii)and valley (Q. lobata) oaks. The latter, in particular, is considered by the Morton Arboretum assessors to be already much diminished by habitat conversion. 

In the East, hydrological changes have facilitated serious damage to Ogelthorpe oak (Q. oglethorpensis) by the fungus that causes chestnut blight–Cryphonectria parasitica

The Morton study mentions oak wilt (Ceratocystis or Bretziella fagacearum) as an actual or potential factor in decline of oaks in the red oak clade (Sect. Lobatae). Only one of the oak species discussed – Q. arkansana – is in the East, were oak wilt is established. The rest are red oaks in California, where oak wilt is not yet established. Again, there is no discussion of the impact of oak wilt on widespread species not now considered to be of conservation concern.

In the individual species profiles making up the bulk of the Morton report on oaks, but not in the summary, the Morton report also mentions the goldspotted oak borer (Agrilus auroguttatus) as an actual or potential factor in decline of the same oaks in the red oak group. The following species – Q. engelmanni, Q. agrifolia, Q. parvula, Q. pumila — are in California and at most immediate threat.

The Morton study also mentions several native insects that are attacking oaks, and oak decline. It calls for further research to determine their impacts on oak species of concern.

For analyses of the various pests’ impacts on oaks broadly, not focused on at-risk tree species, see my recent blog updating threats to oaks, posted here, and the pest profiles posted at www.dontmovefirewood.org

Pines

The Morton report lists 12 pine species as priorities out of the total of 37 species native to the United States. The report notes that the majority of the at-risk species in the West are threatened primarily by high mortality from one or more pests, in particular native bark beetles.

 Six of the 12 priority species are five-needle pines affected by white pine blister rust (WPBR; Cronartium ribicola). The report contains maps showing the distribution of WPBR. In some cases, the native mountain pine beetle (Dendroctonus ponderosae) contributes to immediate mortality. Presentation of recommendations is scattered and sometimes seems contradictory. Thus, P. longaeva (bristlecone pine) is said by the IUCN to be stable and is not listed among the 12 threatened species, but the Morton Arboretum assessors called for its receiving high conservation priority. P. albicaulis (whitebark pine) is a candidate for listing as Threatened under the Endangered Species Act, but the Morton Arboretum authors did not single it out for priority action beyond listing it among the dozen at-risk species.

P. albicaulis (whitebark pine) at Crater Lake National Park; photo courtesy of Richard Sniezko, USFS

The report also notes impacts by Phytopthora cinnamomi on pines; a maps shows the distribution of this non-native pathogen. A third non-native pathogen — pitch canker (Fusarium circinatum) — is mentioned as affecting Monterrey pine (P. radiata). Torrey pine (Pinus torreyana) is also affected by pitch canker, but this pathogen is ranked by the Morton study as causing only moderate mortality in association with other factors. Torrey pine is ranked as critically endangered and decreasing in populations.

The report also publishes the rankings developed by Potter et al. (2019).  P. torreyana was the top-ranked pine, ranked at 18 (less urgent than, eastern hemlock).

The Morton study authors concluded that native U.S. pines are under serious threat. However, their economic, ecological, and cultural importance makes them obvious targets for continued conservation priority.

For my analysis of the various pests’ impacts on pines broadly, see the pest profiles posted at www.dontmovefirewood.org

Lauraecae

The Morton group analyzed five of the 13 species native to the United States, chosen based on three factors – tree-like habit, susceptibility to laurel wilt disease, and distribution in areas currently affected by the disease. They note the importance of Sassafras as a monotypic genus.

Horton House before death of the redbay trees; photo by F.T. Campbell

The Morton study notes the conservation status of several species needs changing due to the rapid spread of laurel wilt disease. I applaud this willingness to adjust, although I would be inclined to assign a higher ranking based on the most recent data from Olatinwo et al. (2021), cited here.

  • Redbay (Persea borbonia) was assessed in 2018 as IUCN Least Concern; it is now being re-assessed, with a probable upgrade to Vulnerable. The Morton study says that recent evidence points towards the ecological extinction of P. borbonia from coastal forest ecosystems. Potter et al. (2019) ranked redbay as fifth most deserving of conservation effort overall.
  • Silk bay (Persea humilis), endemic to Florida, is currently being assessed for the IUCN; it is recommended that it be designated as Near Threatened.
  • Swamp bay (Persea palustris) is widespread. It is being assessed for the IUCN; it is recommended for the Vulnerable category.
  • Sassafras (Sassafras albidum) is widely distributed. Sassafras had been assessed as of Least Concern as recently as the 2020 edition of the IUCN Red List. The Morton study notes that the current distribution of laurel wilt disease spans only a small percent of its range, so it does not pose an imminent threat to sassafras. However, cold-tolerance tests for the disease’s vector indicate the possibility of northward spread into more of the sassafras’ distribution. I note that laurel wilt is currently present in northern Kentucky and Tennessee.  

American Beech  

The Morton report notes that beech (Fagus grandifolia) is very widespread and a dominant tree in forests throughout the Northeastern United States and Canada. It is the only species in the genus native to North America, so presumably of high conservation interest. The report also notes its ecological importance (see also Lovett et al. 2006).

Beech bark disease is reported by the Morton Arboretum to have devastated Northeastern populations. The disease is well established in all beech-dominated forests in the United States, though it occurs on less than 30% of American beech’s full distribution. After mature beech die, thickets of young, shade-tolerant root sprouts and seedlings grow up, preventing regeneration of other tree species. Nevertheless, American beech was listed as of Least Concern by the IUCN in 2017.

The report makes no mention of beech leaf disease, which came to attention after the Morton assessment project had been almost completed. I think this is a serious gap that undermines the assessment not just of the species’ status in the wild but also of the efficacy of conservation efforts.

healthy American beech; photo by F.T. Campbell

Walnuts

The Morton team evaluated five species of walnut (Juglans californica, J. hindsii, J. major, J. microcarpa, and J. nigra); and butternut (J. cinerea). Thousand cankers disease – caused by the fungus Geosmithia morbida, which is vectored by the walnut twig beetle (Pityophthorus juglandis) – is reported by the Morton team as second in importance to butternut canker. However, as I noted in a recent blog, the states that formerly considered the disease to pose a serious threat no longer think so and are terminating their quarantine regulations. This decision too recent for consideration by the Morton team.

One of the walnuts — Juglans californica (Southern Calif walnut) — is considered threatened by habitat loss. The rest of the walnuts are categorized by the IUCN as of Least Concern.

cankered butternut in New England; photo by F.T. Campbell

Butternut (Juglans cinerea), however, is considered by the IUCN to be Endangered. Although present across much of the Eastern deciduous forest, it is uncommon. It has suffered an estimated 80% population decline as a result of the disease caused by the butternut canker fungus Ophiognomonia clavigignenti-juglandacearum

SOURCES

Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Am beech. Lisle, IL: The Morton Arboretum. August 2021

Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Native U.S. Hickories. Lisle, IL: The Morton Arboretum.

Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Kentucky Coffeetree. Lisle, IL: The Morton Arboretum.

Beckman, E., Meyer, A., Denvir, A., Gill, D., Man, G., Pivorunas, D., Shaw, K., & Westwood, M. (2019). Conservation Gap Analysis of Native U.S. Oaks. Lisle, IL: The Morton Arboretum.

Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Native U.S. Pines. Lisle, IL: The Morton Arboretum.

Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Native U.S. Laurels. Lisle, IL: The Morton Arboretum. August 2021

Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Native U.S. Walnuts. Lisle, IL: The Morton Arboretum. August 2021

Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Native U.S. Yews. Lisle, IL: The Morton Arboretum.

Lovett, G.M., C.D. Canham, M.A. Arthur, K.C., Weathers, and R.D. Fitzhugh. 2006. Forest Ecosystem Responses to Exotic Pests and Pathogens in Eastern North America. BioScience Vol. 56 No. 5 May 2006)

Olatinwo, R.O., S.W. Fraedrich & A.E. Mayfield III. 2021. Laurel Wilt: Current and Potential Impacts and Possibilities for Prevention and Management. Forests 2021, 12, 181. 

Potter, K.M., M.E. Escanferla, R.M. Jetton, G. Man, B.S. Crane.  2019. Prioritizing the conservation needs of United States tree species: Evaluating vulnerability to forest insect and disease threats. Global Ecology and Conservation (2019), doi: https://doi.org/10.1016/

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Threats to Oaks – Update

Quercus lobata in Alameda County, California; photo by Belinda Lo via Flickr

Five years ago I posted a blog about the threat to oak trees from non-native insects and pathogens. I am prompted to update what I said then by the publication of a monumental new analysis of endangered oak species (Beckman et al. 2021; full citation at end of blog). This report is packed with maps and graphics displaying centers of endemism, geographic areas with highest threat levels, etc., and individual profiles of all species it deems at risk.

The new study, led by the Morton Arboretum, says there are more than 200 oak species in North America – including Mexico; but only 91 species native to the United States. Of these, 28 species qualify as “of conservation concern” – defined as facing a moderate or greater threat. The principal threats to oak species are small populations or ranges and conversion of habitats for human use. Overall, 10 (36%) of the oak species “of conservation concern” have some actual or potential exposure to established non-native pests.

The report states that two species are significantly threatened by a non-native pathogen: Shreve oak (Quercus parvula) by the sudden oak death pathogen Phytophthora ramorum and Ogelthorp oak (Q. ogelthorpensis) by the chestnut blight pathogen Cryphonectria parasitica. 

Several other California oaks are under some level of attack by the polyphagous and Kuroshio shot hole borers. The goldspotted oak borer (GSOB) is mentioned only in the individual species’ profiles, and largely as a potential or undetermined threat. For example, Engelmann oak (Quercus engelmannii) is reported to have suffered some damage from GSOB but that mortality is “likely a result of a complex of factors (e.g., drought and root diseases).” The potential threat from both SOD and oak wilt is mentioned for several of the oaks that are in the red oak subgenus (Erythrobalanus).

The Morton Arboretum’s determination is based on the fact that the non-native insects and pathogens that I described five years ago are attacking primarily widespread species and have not – to date – caused sufficient damage to imperil those species. This situation contrasts sharply with certain Lauraceae (e.g., redbay) threatened by laurel wilt disease; five-needle pines killed by white pine blister rust; eastern or Canadian hemlock killed by hemlock woolly adelgid; and American beech, which now faces threats from beech bark disease, beech leaf disease, and possibly European beech leaf weevil.

Meanwhile, the non-native pests of oaks that I described five years ago continue to spread.

My Update Incorporating Morton Arboretum’s Analysis: Threats in the East

In the East (from the Atlantic Ocean to the Great Plains), oaks are under serious attack from two non-native pests; a third pest has been suppressed by biological control.

oaks killed by European gypsy moth, Shenandoah National Park; photo by F.T. Campbell
  • The European gypsy moth (Lymantria dispar). The APHIS quarantine map shows its spread to be largely contained. The moth is currently present throughout the Northeast as far west as Wisconsin and neighboring parts of Minnesota and Illinois; and as far south as Currituck and Dare counties in North Carolina. The European gypsy moth continues to be the target of major containment and suppression programs operated by USDA Animal and Plant Health Inspection Service (APHIS), the US Forest Service and the states. For years US Forest Service spent half of its entire budget for studying and managing non-native pests on the European gypsy moth. By FY2021, this allocation had been reduced to a quarter of the total budget.  The European gypsy moth is the most widespread non-native pest (see map, linked to above) and attacks a wide range of tree and shrub species. Still, it rarely causes death of the trees.
  • Oak wilt (caused by the fungus Ceratocystis fagacearum) is widespread from central Pennsylvania to eastern Minnesota and across Iowa, down the Appalachians in West Virginia and North Carolina-Tennessee border, in northern Arkansas and with large areas affected in central Texas. There are several outbreaks in New York State. The most recent map I can find is from 2016 so it is difficult to assess more recent status. In that year, the US Forest Service called oak wilt one of the most serious tree diseases in the eastern U.S. It attacks primarily red oaks and live oaks. It is spread by both bark-boring beetles and root grafts.

In 2016 I also listed the winter moth (Operophtera brumata) as a threat. Now, its presence in coastal areas of New England and Nova Scotia (and British Columbia) has been reduced to almost nuisance levels by action of the biological control agent Cyzenis albicans. (See this report.)

SOD-infested rhododendron plant; photo by Indiana Department of Natural Resources

The most significant potential threat to eastern oaks identified to date is the sudden oak death (SOD) pathogen, Phytophthora ramorum. Several oak species have been shown in laboratory studies to be vulnerable to infection by this pathogen. Furthermore, the climate in extensive parts of the East is considered conducive to supporting the disease. SOD has not been established in the East. However, too frequently SOD-infected plants have been shipped to eastern nurseries, where some are sold to homeowners before regulatory officials learn about the situation and act to destroy the plants.

My Update Incorporating Morton Arboretum’s Analysis: Threats in the West

In the West, millions of oaks have been killed by several pathogens and insects that are established and spreading. Another has been introduced since my earlier blog (see Mediterranean oak beetle, below). Additional threats loom, especially Asian species of tussock moths.

  • Coast live oaks, canyon live oaks, California black oaks, Shreve’s oaks, and tanoaks growing in coastal forests from Monterey County north to southern Oregon that catch fog/rain are being killed by sudden oak death (SOD). In this region, SOD has killed an estimated 50 million trees. While the preponderance of dead trees are not true oaks, but tanoaks (Notholithocarpus densiflorus), significant numbers of coast live oak (Quercus agrifolia), Shreve oak (Q. parvula var. shrevei), and California black oaks (Q. kelloggii) have also been killed. SOD continues to intensify in this region, and to expand.  Sixteen California counties are now infected, and the infection in Curry County, Oregon has spread farther North. More worrying, two additional strains of the pathogen have been detected in forests of the region.

The Morton Arboretum analysis singled out Q. parvula as particularly threatened by SOD. Californians note that it is the subspecies Q. parvula var. shrevei that is threatened by SOD; the other subspecies, Q. parvula var. parvula (Santa Cruz Island oak) is – so far – outside the area infested by SOD.

California black oak killed by GSOB; photo by F.T. Campbell
  • Also in California, coast live oaks, black oaks, and canyon oaks in the southern part of the state are being killed by goldspotted oak borer.  Confirmed infestations are now in San Diego, Orange, Riverside, San Bernardino, and Los Angeles counties. See the map here. At least 100,000 black oaks have been killed in less than 20 years. Neither the State of California nor USDA APHIS has adopted regulations aimed at preventing spread of the goldspotted oak borer.

The Morton Arboretum analysis considers California black oak (Q. kellogii) to be secure.

  • Two more wood-boring beetles threaten oaks in southern California – the Polyphagous and Kuroshio shot hole borers. One or both of the invasive shot hole borers are known to be present in San Diego, Orange, Los Angeles, Riverside, San Bernardino, Ventura, and Santa Barbara counties. The beetles feed on coast live oaks, canyon live oaks, Engelmann oaks, and valley oaks – as well as many other kinds of trees. In the process, the beetles transmit a fungus that kills the tree. Many of the vulnerable tree species anchor the region’s riparian areas and urban plantings. See a map of the shot hole borers’ distribution here.
  • In November 2019, scientists discovered a new ambrosia beetle in symptomatic valley oaks (Quercus lobata) trees in Calistoga, Napa County. The insect was determined to be a European species, Xyleborus monographus. The common name is Mediterranean oak borer, or MOB. Within a few months it was known that this beetle is fairly widespread in Napa and neighboring Lake counties. The beetle had never been intercepted at ports in California or found in traps designed to detect bark beetles deployed in the San Francisco Bay area but not including Napa or Sonoma. Like other beetles in the Scolytinae subfamily, MOB can transmit fungi. One of the fungal species detected in the Calistoga infestation is Raffaelea montetyi, which is reported to be pathogenic on at least one European oak species.

The California Department of Food and Agriculture proposed assigning a pest rank to the beetle in December 2020.  In their draft document ranking risk, state officials note that a proven host — Q. lobata — is widespread in California and the insect is probably capable of establishing over much of the state. The possible economic impact was described as possibly affecting production of oaks in California nurseries and triggering quarantines. 

Therefore, X. monographus could exacerbate the effects of SOD on California oaks.

The Morton Arboretum has singled out Q. lobata as at risk because of conversion of more than 90% of its habitat to agriculture.

Asian gypsy moths swarm a ship in Nakhodka, Russian Far East; USDA APHIS photo

A looming potential threat to oaks on the West coast is the risk that tussock (gypsy) moths could be introduced to the area. The risk is two-fold – the Asian gypsy moth continually is carried to the area on ships bearing imports from Asia (as discussed in my blog in April). The European gypsy moth is sometimes taken across the country from its widespread introduced range in the East on travellers’ vehicles, outdoor furniture, or firewood. Both the West Coast states and USDA search vigilantly for any signs of gypsy moth arrival.

SOURCES

Beckman, E., Meyer, A., Denvir, A., Gill, D., Man, G., Pivorunas, D., Shaw, K., & Westwood, M. (2019). Conservation Gap Analysis of Native U.S. Oaks. Lisle, IL: The Morton Arboretum. https://mortonarb.org/app/uploads/2021/05/conservation-gap-analysis-of-native-US-oaks_sm.pdf

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Host Tree Features as Predictors of Insect Damage

As this blog has repeatedly demonstrated, new non-native forest insects continue to be intercepted at ports-of-entry, including the beetles in the highly-damaging Scolytinae group (wood borers and bark beetles) – despite implementation of international rules to stop them (ISPM#15). Inspection is not an effective preventive measure – although useful as a deterrent when combined with effective requirements for treatment or other measures.

Meanwhile, early detection/rapid response programs are difficult and expensive, so officials need to determine priority targets. There has been considerable effort to develop tools for predicting which types of previously unknown – or poorly known – organisms will cause the most significant damage. Past studies have shown that traits of introduced species have not been strong predictors of impact [Schultz et al. (2019); full citation at end of blog]. Newer studies validate a different approach – focusing on the traits of the host trees. This is, of course, possible only when the probable hosts are known!

The focus on traits of hosts appears to be an application of components of the concept put forward by Lovett et al. in 2006. They found that a pest’s level of impact resulted from a combination of: 1) pest characteristics, i.e., mode of action, host specificity, and virulence; and 2) host characteristics, i.e., its importance in the forest ecosystem, its uniqueness, and its phytosociology (defined as whether the tree grows in pure or mixed stands, its role in succession dynamics, and how efficiently it regenerates; Lovett et al. (2006) looked at a broader suite of impacts, linked to changes in forest composition that result from mortality of the principal hosts.

The on-going project seeks features/traits useful in predicting the impacts of non-native insects on North American trees. [I recognize that it is much more difficult to carry out a statistical study of pathogens – but the impact of several non-native pathogens is so high that we need to try!] In April 2020 I posted a blog summarizing one step in this study [Mech et al. (2019); full citation at the end of this blog], which focused on pests of conifers. The second step – analysis of pests of hardwoods – has now been published [Schultz et al. (2019)]. I look forward to the third component, which will analyze generalists which utilize hosts in more than one angiosperm family or both angiosperms and conifers. (Some prominent examples, e.g., Asian longhorned beetle, the polyphagous and Kuroshio shot hole borers, and brown spruce longhorned beetle, are considered “generalists” under the criteria applied in this project.)

Here I briefly recapitulate the findings of Mech et al. (2019) on conifers; report on Schultz et al. (2019) on hardwoods; and note similarities and differences in their findings.

eastern hemlocks killed by hemlock woolly adelgid in Linville Gorge, N.C. photo by Steven Norman, USFS

A Quick Recap on Conifers

Mech et al. (2019) analyzed 58 insects that specialize on conifers (for a full discussion, see blog). About half of the approximately 100 conifer species native to North America have been colonized by one or more of these 58 non-native insects. Three-quarters of the affected trees have been attacked by more than one non-native insect. One of the insects attacked 16 novel North American hosts.

Of these 58 insects, only six are causing high impacts, all in the orders Hymenoptera (i.e., sawflies) and Hemiptera (i.e., adelgids, aphids, and scales) which feed on leaves or sap. These six are (1) Adelges piceaebalsam woolly adelgid; (2) Adelges tsugaehemlock woolly adelgid; (3) Elatobium abietinum—green spruce aphid; (4) Gilpinia hercyniae—European spruce sawfly; (5) Matsucoccus matsumurae—red pine scale; and (6) Pristiphora erichsonii—larch sawfly. The high-impact pests included no wood borers, root feeders, or gall makers.

Mech et al. (2019) evaluated whether the probability of a non-native conifer specialist insect causing high impact on a naïve North American host could be predicted by any of the following characteristics: (a) evolutionary divergence time between native and novel hosts; (b) life history traits of the novel host; (c) evolutionary relationship of the non-native insect to native insects that have coevolved with the shared North American host; and/or (d) the life history traits of the non-native insect.

Major Drivers of Impacts

They found that the major drivers of impact severity for those that feed on foliage and sap (all the high-impact pests) were:

1) Host’s evolutionary history–

The greatest probability of high impact for a leaf-feeding specialist was when North American hosts diverged from a coevolved host of the insect in its native range recently (~1.5–5.0 million years ago [mya]). The divergence time for peak impact was longer for sap‐feeders – (~12–17 mya). The predictive power of the divergence-time factor was stronger for sap-feeders than for leaf feeders.

deep shade of a hemlock grove; Cook Forest State Park, Pennsylvania; photo by F.T. Campbell

2) Shade tolerance and drought intolerance – A tree species with greater shade tolerance and lower drought tolerance is more vulnerable to severe impacts. This profile fits most species of Abies, Picea, and Tsuga.

3) Insect evolutionary historyWhen a non-native insect shares a host with a closely related herbivorous insect native to North America, the invader is slightly less likely to cause severe impacts.

None of the insect life history traits examined, singly or in combination, had predictive value.

Mech et al. (2019) did not address pathogens. However, Beckman et al. (2021) report that only three non-native organisms pose serious threats to the 37 species of Pinus native to the U.S. All are pathogens. White pine blister rust (WPBR) attacks nine species and has caused widespread changes in forest composition in the West. Pine pitch canker is listed as threatening two narrowly endemic pine species (P. radiata and P. muricata). I am surprised that Beckman et al. (2019) indicate that only a lower threat is posed to P. torreyana by this pathogen. Phytophthora root rot (Phytophthora cinnamomi) threatens one widespread pine species (P. echinata).

Note that the conifer genera Mech et al. (2019) determined to best fit one of the predictive factors – shade tolerance –  (see above) does not apply to  Pinus.

ash tree killed by emerald ash borer; Shenandoah National Park. photo by F.T. Campbell

New Study of Hardwoods

The second study – Schultz et al. (2021) – analyzes the traits and factors associated with damaging  non-native insects that specialize on a single family of woody angiosperms (= hardwood specialists). This study used the same methodology as Mech et al. (2019) with two exceptions. First, they included consideration of whether the insect was in the subfamily Scolytinae (bark and ambrosia beetles) because of their close association with fungi which are sometimes highly phytopathogenic in novel hosts. Second, they added two host traits not included in the conifer study: ability to resprout and carbon to nitrogen ratio of the aboveground herbaceous material.

Schultz et al. (2021) developed an initial list of 191 hardwood-specialist insects. 29% were categorized as having no documented effect on hosts. Eight (4.2%) were identified as causing high impact on North American hardwoods = (A) goldspotted oak borer (GSOB) (Agrilus auroguttatus), (B) emerald ash borer (EAB) (Agrilus planipennis), (C) beech scale (Cryptococcus fagisuga), (D) walnut twig beetle (WTB) (Pityophthorus juglandis), (E) viburnum leaf beetle (Pyrrhalta viburni), (F) erythrina gall wasp (Quadrastichus erythrinae), (G) banded and European elm bark beetles (Scolytus schevyrewi/multistriatus), and (H) redbay ambrosia beetle (RAB) (Xyleborus glabratus).  75% of these high-impact species are beetles. Scale and gall wasp types are represented by one each. [One of these species, Pityophthorus juglandis, vectors thousand cankers disease (TCD) of walnut. As I reported in a recent blog, state phytosanitary agencies have decided that TCD does not pose a significant threat to walnuts and are terminating their quarantines and regulatory programs. I wonder whether this new assessment should prompt the authors to drop it from the list of high-impact pests.]

coast live oak killed by GSOB; Heisey County Park, San Diego County, California; photo by F.T. Campbell

Information gaps prompted the authors to whittle this list down to 100 insect species for the remainder of the analysis. They identified 151 North American hardwood trees or shrubs used as hosts by the 100 insects, resulting in 292 insect-novel host pairs. Of the 151 host species, 37% hosted more than one non-native insect.

Explaining Impacts and Influential Factors

1) Being a scolytine beetle best explains a specialist insect’s impact on hardwoods. Five (63%) of the eight high-impact species were wood borers, three of them scolytines: S. schevyrewi/multistriatus, X. glabratus, and the possibly misplaced P. juglandis. (Reminder: Mech et al. found that no insect traits predicted impact for conifer specialists).

2) Two factors were moderately explanatory:

  • Wood density. Moderate wood density (0.5–0.6 mg/mm3) resulted in an 11–12% chance it would experience high impact from a hardwood specialist; risk decreased if the novel host had lower or higher wood density.
  • Divergence time between native and novel hardwood hosts.  The greatest probability of high impact was on a novel host that diverged from the host in the insect’s native range ~6 – 16 mya; that risk decreased to nearly zero for hardwood hosts more distantly or closely related. Compared to conifer specialists, this divergence distance was longer than for insects that feed on leaves, shorter than for insects that feed on sap.

3) The impact of specialist insects is not affected by relatednessto native insects on the shared North American hardwood host. Half of the 14 high impact insect-host pairs had a congener present on the shared host.

Reasons for the Influence of These Factors per Schultz et al. (2019)

  • Importance of host evolutionary history.  A novel host that has recently diverged from a native host might retain defenses. If those defenses erode over evolutionary time, this would increase the probability that the invading insect will have high impact as it colonizes the novel North American host in a defense-free space. On the other hand, longer evolutionary divergence times might allow the North American plant to change to the point that the introduced insect doesn’t recognize it as a host.

The peak probability of high impact occurred with hosts more distantly related for hardwood (~ 9.5 mya) than for conifer specialists (~ 3.8 mya). The reasons for this difference could be due to the different feeding guilds: 69% of high impact conifer specialist insects are sap-feeders, the rest foliage feeders, while 72% of 25 high impact hardwood specialists are wood borers; 16% folivores, 8% gall makers, 4% sap-feeders.

  • Fungal symbionts. A naïve host might lack defenses to either the insect or the fungus – or both.
historic Horton House on Jekyll Island, GA, before the redbays were killed by laurel wilt; photo by F.T. Campbell

In North America, the borer-fungi symbiotic relationships is associated with high impact pests of specialist hardwood pests but not conifer pests. However, there are conifer examples on other continents. Possibly North American conifers are at least partially preadapted due to the highly competitive pressures exerted by native scolytines. Conversely, the lower exposure of hardwood hosts to outbreaks of native scolytines might select for less preadaptation.

Another possible explanation is anatomical differences that better allow tree-to-tree below-ground transmission of beetle-vectored phytopathogens in angiosperms (e.g., longer root tracheids, long vessels) than conifers.

  • Wood density. Perhaps fast growing, early successional hardwoods with lower wood density are better able to tolerate herbivory, while slow-growing, well-defended, long-lived hardwoods with higher wood density are better able to resist them. Fast growth might also contribute to rapid compartmentalization of infection and decay caused by associated fungi. (Reminder: wood density was not a significant determinant for conifer specialists.)

Schultz et al. (2019) note that their models might need adjustment when new data become available.

SOURCES

Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Native U.S. Pines. Lisle, IL: The Morton Arboretum.

Lovett, G.M., C.D. Canham, M.A. Arthur, K.C., Weathers, and R.D. Fitzhugh. 2006. Forest Ecosystem Responses to Exotic Pests and Pathogens in Eastern North America. BioScience Vol. 56 No. 5 May 2006)

Mech,  A.M., K.A. Thomas, T.D. Marsico, D.A. Herms, C.R. Allen, M.P. Ayres, K.J. K. Gandhi, J. Gurevitch, N.P. Havill, R.A. Hufbauer, A.M. Liebhold, K.F. Raffa, A.N. Schulz, D.R. Uden, & P.C. Tobin. 2019. Evolutionary history predicts high-impact invasions by herbivorous insects. Ecol Evol. 2019 Nov; 9(21): 12216–12230.

Schulz, A.N.,  A.M. Mech, M.P. Ayres, K. J. K. Gandhi, N.P. Havill, D.A. Herms, A.M. Hoover, R.A. Hufbauer, A.M. Liebhold, T.D. Marsico, K.F. Raffa, P.C. Tobin, D.R. Uden, K.A. Thomas. 2021. Predicting non-native insect impact: focusing on the trees to see the forest. Biological Invasions.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Pest introductions via incoming ships: Higher volumes, expanding ports, more risks, shippers’ response

Volumes of imports continue to rise and enter the U.S. at a wider range of ports. Also, imports continue to arrive with insects in their wood packaging. The international policy intended to fix this problem is not working. It is vital to resolve this issue.

Insects in Wood Packaging

Over the ten-month period October 2020 through June 2021, Customs and Border Protection (CBP)  interceptions were typical, according to Kevin Harriger,  of the Department of Homeland Security, CBP. In a good sign, the number of infested shipments is 4.5% lower than the same period of the previous year. CBP inspectors found 1,563 shipments with non-compliant wood packaging. Three quarters, or1,148 shipments, lacked the required ISPM#15 stamp. A pest was found in 415 shipments (26%). Nearly three-quarters of the shipments (72% or 1,119 shipments) were carrying miscellaneous cargo. The leading pest family was Cerambycids. There were fewer Buprestids than in previous years, but more Siricids. (Reference at the end of the blog.)

Government View vs. Industry View

CBP assessed liquidated damages (a penalty related to the value of the cargo associated with the wood packaging; legal process explained here) on 654 cases (42% of the violations). These penalties totaled about $541,000 (Harriger). In response to industry objections, Harriger suggests that importers “know before you go” and work with the National Plant Protection Organization (NPPO; phytosanitary agency) of exporting countries so as to avoid interception-related delays.

At a separate webinar sponsored by IHS Markit (Journal of Commerce), an APHIS representative (Tyrone Jones, Trade Director-Forestry Products) said that in his view, ISPM#15 is working because less than 1% of wood packaging was non-compliant. Jones conceded that given the huge quantities of wood packaging in use, even a small infestation rate can result in a non-trivial amount of non-compliant wood. Jones also noted that APHIS has co-hosted workshops with Asian and Central/South American phytosanitary officials to improve their implementation of ISPM#15. The official process calls for the U.S. National Plant Protection Organization (NPPO; APHIS) to inform the foreign NPPO of problems and ask that agency to investigate and bring about a solution. Jones said the U.S. has received feedback from the exporting countries. In one case – apparently in China – APHIS got more directly involved –although how it did so is unclear. You may listen to the webinar by going here. Listening is without cost, but you must register at the site.

dunnage on a dock

However, as the previous guest blog by Gary Lovett and Diana Davila makes clear, importers are frustrated. They insist that even when they exercise great care in obtaining dunnage, the system is not working. I have blogged previously about the need for government to help importers obtain information that would facilitate compliance (go to “wood packaging” category on this blog site). Jones said APHIS could not provide lists of dunnage suppliers with records of non-compliance.

America needs to ensure that pests are not introduced while trade continues. Furthermore, it is a matter of fairness. U.S. importers are trying but are stymied by the process. For these reasons, the Center for Invasive Species Prevention applauds the initiative of Houston importers to engage players in the supply chain in new approaches. We wish them success!

Issue is International

Concern about the impact of these pest detections – and resulting disruption of cargo shipments – is international. According to an article in the Maritime Executive, five international freight transport organizations under auspices of the World Shipping Counsel in the Cargo Integrity Group are pushing the International Plant Protection Convention (IPPC) to work with them to focus mandatory measures on known high-risk areas and cargoes.

Import Volumes Rising

Meanwhile, volumes of imports continue to rise substantially to meet booming consumer demand – with concomitant risk. Also, imports enter at a wider range of ports. The following data refer to containerized cargo, which is associated with crates and pallets. While the form of wood packaging differs from the dunnage used for the break-bulk cargo which has been the problem in Houston, the issues are the same.

The Southern California port complex (Los Angeles/Long Beach) expects a 10% growth in container volumes this year – to more than 19 million TEU [a standardized measurement equivalent to a 20-foot long container] (Angell 5 August 2021). A few weeks later, this figure was raised to 20 million TEU (Mongelluzo, September 3, 2021). The Seattle-Takoma port complex has received 12.9% more containers from Asia this year than during the same period in 2019. Oakland has received 17.8% more (Mongelluzo August 24, 2021).  

In the East, the port of Savannah moved 5.3 million TEU in the fiscal year ended June 30, an 18% increase over the same period in 2018–19 (before the COVID-19 pandemic upset import volumes). In expectation of further growth in volume, the Port of Savannah is creating additional container storage capacity; it aims to reach 7.5 million TEU by mid-2023 (Ashe 26 July 2021). The Port Authority of Virginia has voted to dredge its main channel which would make the port the deepest on the East Coast (surpassing Charleston) and allow greater access to larger ships coming from Southeast Asia. Virginia’s four container terminals currently handle 4.8 million TEU, collectively. We – federal taxpayers – are paying for these port expansions and associated risks of introduction of wood-boring pests, Asian tussock moths, and aquatic invaders.

Congress Paying to Expand Ports

The bipartisan infrastructure bill now pending in Congress contains $11.8 billion in new federal funding over the next five years to expand and improve ports and inland waterways (Szakonyi August 3, 2021). For example, funding for a portion of the dredging planned by the Port Authority of Virginia is included in this bill.

If adopted, the bill [§40804(b)(6)] also would provide $200 million for invasive species detection, prevention, and eradication, including conducting research and providing resources to facilitate detection of invasive species at points of entry. The funding is divided equally between the departments of Interior and Agriculture. Agencies will need these funds to address the plant pests (to say nothing of aquatic invaders) that arrive at these expanded ports!

Lymantria monacha 1 Novlinder, Saxafraga -Ab H Bass

Asian Gypsy Tussock Moths – Improved Detection Rates Result from Better Targetting

Another threat to America’s forests is the arrival of tussock moths from Asia. Kevin Harriger told the National Plant Board that CBP has improved its targetting of ships coming from Asia, based on flight dates, proximity of specific loading docks to forested areas, and other factors. Since 2018, CBP has detected moth egg masses on 177 ships. This equals an approach rate of 12.5% – much higher than the historical moth approach rate of 1%. Ships detected to be transporting moths must leave U.S. or Canadian waters and be cleaned. CBP is now searching vessels more intensely during re-inspection– and finding additional egg masses that had been missed. Thanks to the better targetting data, APHIS, CBP and state officials are aware of the approach of suspect vessels before they arrive.

SOURCES

Angell, M. Port of Virginia to proceed with second dredging project. July 27, 2021. https://www.joc.com/port-news/us-ports/port-virginia/port-virginia-proceed-second-dredging-project_20210727.html?utm_source=Eloqua&utm_medium=email&utm_campaign=CL_JOC%20Daily%207%2F28%2F21%20_PC00000_e-production_E-107609_TF_0728_0617

Angell, M.  Long Beach will need 24-hour shifts for future cargo flow: Cordero. August 5, 2021 https://www.joc.com/port-news/us-ports/port-long-beach/long-beach-will-need-24-hour-shifts-future-cargo-flow-cordero_20210805.html?utm_campaign=CL_JOC%20Port%208%2F11%2F21%20_PC00000_e-production_E-108850_TF_0811_0900&utm_medium=email&utm_source=Eloqua

Ashe, A.  Savannah aims to restore fluidity amid record cargoes. July 26, 2021. https://www.joc.com/port-news/us-ports/georgia-ports-authority/savannah-aims-restore-fluidity-amid-record-cargoes_20210726.html?utm_campaign=CL_JOC%20Port%207%2F28%2F21%20%20_PC00000_e-production_E-107524_TF_0728_0900&utm_medium=email&utm_source=Eloqua

Harriger, K. DHS CBP. Presentation at annual meeting of the National Plant Board, 26 July, 2021. https://www.youtube.com/watch?v=btb6FwQkeeo&list=PLeT07astA4fs0OOHQDWHJw2thXQX-4UBb

Haack, R.A., Britton, K.O., Brockerhoff, E.G., Cavey, J.F., Garrett, L.J., et al. 2014. Effectiveness of the International Phytosanitary Standard ISPM No. 15 on Reducing Wood Borer Infestation Rates in Wood Packaging Material Entering the United States. PLoS ONE 9(5): e96611. doi:10.1371/journal.pone.0096611

Jones, J.T, USDA APHIS during JOC webinar, 19 August, 2021

Mongelluzzo, B. Carriers returning to Oakland, Seattle-Tacoma as LA-LB congestion mounts. 24 August, 2021. https://www.joc.com/port-news/us-ports/carriers-returning-oakland-seattle-tacoma-la-lb-congestion-mounts_20210824.html?utm_source=Eloqua&utm_medium=email&utm_campaign=CL_JOC%20Daily%208/25/21_PC00000_e-production_E-110369_KB_0825_0617

Mongelluzzo, B. September 3, 2021. LA-LB preparing for record 20 million TEU this year. https://www.joc.com/port-news/us-ports/la-lb-preparing-record-20-million-teu-year_20210903.html?utm_source=Eloqua&utm_medium=email&utm_campaign=CL_JOC%20Daily%209%2F7%2F21%20_PC00000_e-production_E-111179_TF_0907_0617

Szakonyi, M. August 3, 2021. JOC. Advancing infrastructure bill promises US port funding splurge. https://www.joc.com/port-news/advancing-infrastructure-bill-promises-us-port-funding-splurge_20210803.html?utm_campaign=CL_JOC%20Port%208%2F4%2F21_PC00000_e-production_E-108286_TF_0804_1045&utm_medium=email&utm_source=Eloqua

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

A novel approach for keeping pests out of wood packaging material

A guest blog written by Gary Lovett, Cary Institute of Ecosystem Studies; and Diana Davila, UTC Overseas, Inc.

Gary Lovett died suddenly in December 2022. The future of this initiative is unclear.

Importers are learning that relying on the ISPM#15 mark to ensure that solid wood packaging material is pest-free can be a costly mistake. We propose a private sector solution for keeping insect pests out of wood packaging material and dunnage used in international trade. This voluntary program will supplement ISPM#15 procedures, and implementing it will require cooperation from U.S. government agencies.

dunnage left on the deck of Pan Jasmine after earlier off-loading of cargo;
intercepted by CBP at Port of New Orleans; CBP photo

Readers of this series of blogs are well aware that international trade using solid wood packaging material (WPM) such as pallets, crates and dunnage can transport wood-boring insects into the U.S., and that these pests are one of the biggest threats to forest health in this country. The international regulation known as ISPM#15 (International Sanitary and Phytosanitary Measures #15), adopted by the U.S. in 2006, was supposed to solve this problem by mandating treatment of WPM to kill embedded insects through heat, fumigation, or other approved treatments. Treated wood is marked with an official stamp. Research has shown that this has only been partially effective, and the U.S. regularly receives WPM that is marked as having been treated, but is nonetheless infested with insects. This can occur either because the treatments are not 100% effective, or because they were improperly applied- or not applied at all, and the wood is fraudulently marked- by our trading partners.

This is a big problem not only for our forests, but for shippers and importers as well. Importers purchase wood and dunnage marked with the ISPM#15 stamp expecting it to be pest-free, but Customs and Border Protection (CBP) inspectors at ports often find insects in the wood. In an average year, CBP finds insect infestations in WPM in about 700 incoming shipments. Depending on the type of insect, this can result in a large fine for the importer or shipper (up to the value of the cargo) and they could also be required to re-export the infested cargo immediately. The re-exportation can be especially costly if an entire ship needs to be turned around and sent elsewhere because of infested WPM on board. In a recent example (see photo above), the Pan Jasmine, a 590-foot, Panamanian-flagged vessel, was found by CBP on July 17, 2021 to have infested dunnage on board and was turned around before it could dock at the Port of New Orleans (see photo above). These episodes often cost importers hundreds of thousands of dollars each time they happen, and in some cases the total cost for a single incident can be in the millions of dollars.

Cerambycid larva found in dunnage from Pan Jasmine; photo by A. Cunningham, USDA APHIS

Importers are learning that relying on the ISPM#15 mark to ensure that WPM is pest-free can be a costly mistake. To try to address this problem, a coalition of shippers that use the Port of Houston established a committee to investigate the issue and try to come up with solutions. The committee, called the Houston WPM and Dunnage Coalition, includes a core group that includes the two of us plus Peter Svensson of Clipper Americas and Richard Brazzale of Lake Shore Associates. The full group includes representatives of several other shipping companies, and we also work with staff from the USDA Animal and Plant Health Inspection Service (APHIS) and CBP.

We suggest a new approach by which importers can help prevent insect infestations of their WPM. Importers routinely use international inspection companies to check merchandise before it is shipped. Working at the loading port, these companies make sure that the cargo is what was ordered and that it is in good condition. There are several large international inspection companies that provide this service to importers for a fee. If the inspectors could be trained to also check for signs of insect infestation in the WPM, the problem could be addressed prior to shipment, reducing the risk of fines and re-exportation when the cargo reaches the U.S. We have spoken with several inspection companies that are eager to provide this service, and we believe that many shippers and importers will conclude that these pre-loading inspections can save them money by avoiding the high risk of fines and re-exportation.

To move forward with this program, inspection companies need to have their personnel trained to spot pest infestations in WPM. CBP has the most experience in this, and we hope they will agree to offer training sessions, or at least provide training material. We also believe that importers and shippers would benefit from creating an organization to oversee the program, certify inspectors and collect information on reliable producers of pest-free WPM. We hope a pilot program can be started within the next year, and that a full program can be ramped up after that. While we are proposing this for cargo bound for the U.S., the system is in concept applicable to cargo moving anywhere in the world. And while we focus on insects in WPM, the same approach could be used to inspect for other invasive species; for instance, seeds on the floor of a shipping container or insect egg masses on containers or cargo.

evidence of insect damage to dunnage on Pan Jasmine; CBP photo

This program offers a private-sector solution to the problem of infested WPM, and represents the first step being sought within the industry to mitigate the risk of pests arriving to the U.S., and the loss of confidence in the ISPM#15 certification being provided by WPM manufacturers. Other possible measures will be discussed in a subsequent blog post. The program would supplement, not replace, ISPM#15 regulations, and importers would still be required to use ISPM#15 compliant WPM. However, this program would reduce companies’ reliance on the ISPM#15 system, which has proven undependable. Developing this system for international shipments of WPM would provide a win-win—good for shippers and importers, and good for forests around the world.

[For Faith Campbell’s blogs on this topic, click on the category “wood packaging,” which is found below the monthly list of blogs on this site.]

New report: Forest Disturbances in the West and their implications for sustainability

whitebark pine killed by white pine blister rust; Crater Lake National Park; photo by F.T. Campbell

Increasing frequency and severity of forest disturbances pose significant challenges to the sustainable management of forests in the West and to the goods and services they provide. A recent study (Barrett and Robertson 2021; full citation at end of blog) found that natural and human-caused disturbances affected 22.3% of forest land in the West over a 5-year period.  The study analyzed fire, drought, insects, disease, invasive plants, their interactions, and their socioeconomic impacts. Climate change was found to affect most disturbance processes now and is expected to continue to do so in the future.

The impacts of these disturbances varied; most disturbances did not result in stand-replacing mortality.

Overarching Findings on Disturbance Agents in Western Forests

  • Insect and disease outbreaks were the most extensive disturbance types. Each was estimated to affect 6.1 million hectares. Insect and disease outbreaks also caused the highest levels of tree mortality. This finding resulted from what was described as a relatively “low” threshold for “disturbance.” The authors set this threshold at disturbances that cause damage or mortality to 25% of trees in a stand or 50% of an individual tree species.

The overwhelmingly important causal agent was the mountain pine beetle (MPB; Dendroctonus ponderosae). Even after an approximately 50% drop in mortality after its peak years in the 2000s, MPB caused almost half the total area affected by all bark beetles combined  2000-2016.

The great majority of “pest” organisms causing disturbance in the West are native. Some non-native pests are important, though, and they are expected to become more important in the future. The most damaging non-native agent is white pine blister rust (WPBR; Cronaritum ribicola). Despite the largest control effort (in the 1930s), WPBR has caused drastic declines in white pines in the West. Currently attention focuses on high-elevation pines, especially whitebark pine (Pinus albicaulis), which is suffering extensive mortality from a combination of drought, MPB, and WPBR.

tanoak mortality in Big Sur, California; photo by Matteo Garbelotto

Other non-native pests discussed in the report are balsam woolly adelgid, larch casebearer, spruce aphid, and sudden oak death (SOD). The report notes the presence of a second strain of the causal agent of SOD (Phytophthora ramorum). In June 2021, a third strain was detected in Oregon forests (COMTF newsletter). There are mere mentions of goldspotted oak borer and polyphagous shot hole borer. The California fivespined ips (Ips paraconfusus) is reported to vector the fungus Fusarium circinatum which causes pitch canker disease in Monterey pine (Pinus radiata).

  • The second most extensive disturbance agent in the West is human activity – silvicultural management and conversion to non-forest land uses. These activities affected 4.4 million ha.
  • The third most extensive disturbance agent is grazing (primarily livestock). This affected 3.9 million ha.
  • Fire thus ranks fourth as a disturbance agent – as measured by extent. During a five-year period ending in 2017 or 2018, fire affected 3.7 million ha. (I don’t know whether this ranking will change in response to the fire cataclysms of the most recent years; apparently the latest year included in the data was 2017.) The area affected by fire during this period was double that of the period 1960 to 2000. However, fire frequency and extent were still considerably lower than in the 1920s through1940s, before the advent of fire suppression, especially in the drier forests of the interior West.
  • Other disturbance events – including those caused by weather and vegetation (presumably invasive plants) – affected far smaller areas: a total of 2.3 million ha.

Furthermore, drought and invasive plants – while increasing in extent & intensity – are often considered contributing factors rather than as proximate causes.

Data on past disturbance extents are poor for all these causes except fire. Analysis is further complicated by the high variability of disturbance events – year to year and across space. It is also often difficult to determine the ultimate causes. This makes the implications of these recent increases difficult to ascertain.

As the report points out, forest conditions are inherently dynamic, not stable. They note particularly human manipulation of fire – originally setting fires and then, more recently, suppressing them, has shaped the region’s forests for centuries. Fire suppression has significantly altered forest structure throughout the region, resulting in increasing fuel loads, decreasing resilience to fire and other disturbances.

Impacts of Climate Change

Fire suppression has also increased rates of carbon sequestration (see below).

The report notes that while past timber harvest, land clearing, insect outbreaks, and fires have reduced carbon stocks in forests across the United States to about half their maximum storage potential, recent vegetation and forest cover dynamics have resulted in net increases in carbon stocks in the West – despite CO2 emissions from trees killed by fire and insect damage since 2000.

In the future, climate change is expected to increase tree mortality substantially. In drier forests, mortality would result from increased fire incidence facilitated by a combination of longer fire season and decreased snowpack, reduced summer precipitation, and higher temperatures. In high-elevation and mesic forests, mortality would result from reduced snowpack, precipitation, and temperature.

About half of the West is likely to experience unprecedented climates by the end of this century. This change in climate could trigger changes in vegetation types and extent, net primary productivity, wildfire frequency, and expansion of the range of tree-damaging pests. Grasslands, chaparral, and montane forests are expected to expand; subalpine forests, tundra, and Great Basin woodlands are expected to contract. 

Except in Arizona, California, and New Mexico, bark beetles are having a larger impact on forest CO2 emissions than is fire. Future impacts are unclear. Under moderate climate conditions forests would grow faster than under more severe scenarios, but they would thereby generate more fuel for the fires likely to occur during dry years. These fires might ultimately lead to lower carbon stocks.

I have addressed the invasive plant data in a separate blog.

Reducing Impacts via Management

Barrett and Robertson (2021) suggest management actions that could reduce the impact of these disturbances. First, they mention actions aimed at reducing invasions by non-native insects, pathogens, and plants. Also, they name actions to ameliorate climate change, such as reducing greenhouse gas emissions or increasing carbon sequestration and storage to mitigate expected future damage from wildfire, drought, and beetles.

They recommended a series of on-the-ground management actions: fuel reduction treatments; thinning to reduce tree mortality from drought; favoring species that do not host specific pests; and planting genetically resistant varieties. They call for caution to prevent transport of pathogens to new areas during restoration planting of nursery stock or in “assisted migration” projects. Economic impacts of disturbance events on recreation could be mitigated by altering the timing and duration of recreational site visits. The authors also note that the best choices will differ both by site-specific factors and by management goals. They call for community education programs, cooperative stewardship across multiple agencies and landowners, and local and regional planning.

Details on Pest Impacts

Disease dominated in the high elevations of interior mountain ranges and in the precipitation-heavy regions of Oregon and Washington. Even in these locations, mortality levels are often low, resulting in multi-aged stands with complex structure. Patterns of disturbance are expected to change as pathogens and their hosts adapt to climate change. The microbes might evolve more rapidly than the host trees.

test planting of rust-resistant seedlings of whitebark pine at Crater Lake NP; photo by Richard Sniezko

Sudden oak death (SOD) is now the leading biotic cause of tree mortality in coastal forests of California [and possibly Oregon?]. In heavily infested areas SOD has caused conversion of previously tanoak-dominated stands. The report provides a summary of Oregon’s attempts to eradicate SOD from 2001 to 2012.

I am surprised by the failure to mention non-native pest impacts on two narrowly endemic species: Port-Orford cedar root disease and pitch canker disease in Monterrey pines – other than to mention the vector (above).

test planting of disease-resistant Port-Orford cedar; photo by Richard Sniezko

Insect outbreaks were most common in pine forests. Decades of fire suppression, and now climate change, have substantially altered forest conditions over millions of hectares, primarily increasing the density of shade-tolerant and fire-intolerant trees (e.g., true firs, Abies spp.). Balsam woolly adelgid (BWA; Adelges piceae) is now threatening subalpine fir stands in British Columbia, Oregon, Washington, Idaho, Montana, and Utah. BWA is ranked as the 10th most damaging forest insect, first among non-native species over the next few decades (2013-2027). The spruce aphid (Elatobium abietinum) is having its most significant impact in coastal Southeast Alaska on Sitka spruce and in Arizona on Engelmann spruce. Projected increases in temperature and the frequency of droughts in the West will likely make spruce aphid a more significant disturbance agent in coming decades.

risk map for goldspotted oak borer

In discussing the goldspotted oak borer (GSOB; Agrilus coxalis sic) in California and emerald ash borer (EAB; Agrilus planipennis) in Colorado, Barrett and Robertson (2021) say that the heterogeneity of western landscapes provides some buffer against invasion.  However, I note that GSOB threatens oaks throughout California (see the map at left). EAB threatens riparian areas of the Pacific states (see map below). These riparian areas are admittedly small in geographic extent but ecologically vital.

Barrett and Robertson (2021) expect seven tree species to suffer substantial levels of tree mortality in the near future.  Six are pines threatened in large part by mountain pine beetle, led by the two high-elevation five-needle pines, whitebark pine (58% of total basal area) and limber pine (44%). These are followed by lodgepole pine (39%), ponderosa pine (28%), pinyon pine (27%), Jeffrey pine (26%). The seventh is grand fir (25% of total basal area); the report does not specify which agents are responsible.

Data Issues

The report notes that insects and pathogens are only partially covered by existing monitoring programs. Pathogens are particularly hard to detect and to make conclusive attributions of causality.

SOURCE

Barrett, T.M. and G.C. Robertson, Editors. 2021. Disturbance and Sustainability in Forests of the Western United States. USDA Forest Service Pacific Northwest Research Station. General Technical Report PNW-GTR-992. March 2021

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Tuning in to the News – Mostly Depressing

In late July I participated in the annual meeting of the National Plant Board (NPB) – the organization representing the states’ phytosanitary agencies. USDA’s APHIS, DHS’ Bureau of Customs and Border Protection (CBP), and various industry associations also participated in the meeting. As usual, I learned lots of depressing developments.

A. Old problems continue to vex:

rhododendron plant infested by P. ramorum; photo by Jennifer Parke, Oregon State University

1) Sudden Oak Death in the Nursery Trade – Again!!!

As you might remember, spring 2019 saw an alarming number of plants infested by the sudden oak death pathogen (Phytophthora ramorum) shipped from west coast nurseries to nurseries in 18 states. Another major incident occurred in 2021. The California Oak Mortality Task Force (COMTF) newsletter for June 2021 reports that one nursery in Oregon shipped plants exposed to P. ramorum to big-box stores in 36 states — twice the number of states that received pathogen-exposed plants in 2019.

The first such incident was in 2004 – 17 years ago! Officials of the states that receive these infested plants are angry that every few years they must divert their resources from other duties to inspect nurseries in their states that have been exposed to the pathogen. They note that these “trace-forward” projects cost state governments money and prevent their carrying out other duties; they also impose significant costs on the in-state nurseries due to holds on sales. When infested plants are found, all these costs rise substantially.

The plant health official from Alabama noted that a single west coast nursery that had repeatedly been found to have infected plants shipped 29 lots of host plants to her state in spring 2021. As is clear from the COMTF article, other states also received thousands of plants that had been exposed to the pathogen. The Alabama official questioned why APHIS tilts so far toward a regulatory system that makes it possible for the “exporting” nurseries to ship. The result – too often – is that an infection at one small business can (repeatedly) impose high costs on hundreds of receiving nurseries and states. [I wonder whether anyone has considered a lawsuit against the source nurseries claiming damages? Would that be successful if the regulatory agencies approved the shipments because – at that time – their inspections had failed to detect the problem?]

Officials from the three west coast states, however, want to support their own nurseries’ efforts to relax regulations and maintain or open markets in the central and eastern states. They point to their own considerable efforts to inspect and certify the pest-free status of nurseries in their states.

Because of the different points of view among the states, the National Plant Board per se has never taken a position on the issue.

However, many states – and even APHIS Deputy Administrator El-Lissy – agree that something is not working. So APHIS is in the midst of reviewing its program, with input from NPB members. Such program reviews have been undertaken several times over the past 18 years. So far, they have never produced a program that effectively stops sales of pathogen-infested plants.

2) Contaminated Wood Packaging

Kevin Harriger of CBP reported that over the nine-month period October 2020 – June 2021, CBP intercepted 1,563 shipments that were in violation of ISPM#15, the international rule that requires that wood packaging be treated to kill pests. Most, or 1,148 shipments (73%), lacked the required mark certifying treatment. Four hundred fifteen (26%) of the total number of shipments had a live pest present. Nearly three quarters of the non-compliant shipments transported miscellaneous cargo. This is not a surprise: all of these characteristics are in keeping with past experience.

Meanwhile, APHIS Deputy Director El-Lissy said APHIS was working with importers, exporting countries’ departments of agriculture, and others to improve compliance. Apparently there were two high-profile incidents when shipments of car components were rejected because of ISPM#15 issues. I am trying to learn more about these incidents.

I recently blogged about the pest risk associated with incoming shipping containers and dunnage.  

3) Asian Gypsy Moths (Tussock moths) Still Infesting Ships

Harriger also said that the period 2019-2020 saw the largest number of ships infested by Asian tussock moth eggs since the program began in 2012.  [I am aware that the Entomological Society is searching for a new name for this group of insects.] On average, 12 of 100 approaching vessels was infested. CBP is using sophisticated models to identify regions within Asian ports where conditions exacerbate the risk of moth contamination. CBP can match individual ships’ loading records to this information to pinpoint which are most likely to be infested.

Oregon and Washington continue to find both Asian and European tussock moths in traps along the Columbia River. Such detections prompt eradication programs of varying expense and disruption.

[In April, I blogged about a report evaluating the risk posed by several Asian tussock moths; the report was prepared by experts under the auspices of the North American Plant Protection Organization.]

B. In addition to the arrival of new pests, there is an alarming spread of established ones:

1) Beech leaf disease

State phytosanitary officials reported detections of beech leaf disease (BLD) in Maine and Virginia. The devastating impact of BLD on this hard mast tree species is described here. BLD has now spread through much of southern New England (Connecticut, Rhode Island, Massachusetts) and up the coast to Maine. Connecticut reports that trees of all sizes are affected. Maine reports that the disease is widespread in the central coastal region.

beech trees in Prince William Forest Park

Virginia reported that the disease has been detected in Prince William Forest Park, a forested area south of Washington, D.C., managed by the National Park Service. This detection is too recent to say how widespread it is.

2) Laurel wilt

Kentucky’s plant health officer reported that laurel wilt disease has been detected on sassafras trees in Louisville, at the northern tip of the state and across the river from Ohio. He noted that a second host plant, spice bush, is in the nursery trade. While laurel wilt is not regulated, officials are concerned about its impact in natural forests. Neighboring states are concerned.

sassafras in northern Virginia; photo by F.T. Campbell

I learned by looking at the map that laurel wilt has also been detected in Sullivan County, Tennessee, on the Virginia border.

3) Spotted Lanternfly

This pest of grapes, tree fruits, and a wide variety of native trees is spreading in Pennsylvania, Delaware, New Jersey, and Maryland. It has also been found in Ithaca, NY, and in Connecticut. The populations in Virginia and West Virginia also continue to spread; a disjunct outbreak has been detected in Prince William County, VA. (south of D.C.). Most alarming are disjunct populations in Ohio on the West Virginia border and in Indiana on the Ohio River border with northern Kentucky. See map here.

The Indiana population has been present for several years. The affected woodland is close to RV parks and other facilities that make further spread likely.

California has established an external quarantine targetting the spotted lanternfly .

C. Wrestling with Continuing Issues:

1) States try to compensate for APHIS’ end of regulating the emerald ash borer and firewood

The members of the NPB have spent years discussing the pros and cons of continuing to regulate ash wood to contain the emerald ash borer (EAB). As I blogged earlier, APHIS has ended its regulatory program. One state – Minnesota – is seeking to use an APHIS procedure to get APHIS’ continued protection from importation of EAB-infested wood (presumably from Canada). Under the Federally Recognized State Managed Phytosanitary Program (FRSMP), a state petitions APHIS to recognize its program for a specific pest. If APHIS grants that recognition, the agency will support the state by continuing to regulate imports of that pest or commodities that might transport the pest when they are destined for the regulating state.

The states have also tried to formulate a system to maintain regulation of firewood (nearly all states’ firewood regulations were based on the federal regulation of all hardwoods to prevent transport of the EAB). As part of this process, the NPB developed guidelines for adoption of regulations by the individual states (available here).  The NPB members are just beginning to explore whether  states might set up third-party certification system(s). Among the challenges to any harmonization are states’ differing legal authorities and disagreement on what threat levels should be applied, and for how long.

2) New information about the Asian longhorned beetle in South Carolina

ALB in South Carolina; photo by R. Brad Thompson, APHIS

South Carolina authorities reported that dendrological studies indicated Asian longhorned beetle (ALB) had been present near Charleston, S.C. since 2012, and possibly earlier. The population has the same genetic makeup as the outbreak in Ohio. This might be explained by either transport of infested wood from Clermont County, Ohio, or that wood packaging entering Charleston harbor came from the same part of China. (Charleston is an important port.) In South Carolina, ALB attacks primarily red maple – as is true at the other infestation sites. However, maple densities are much lower in the swamps of South Carolina and scientists don’t know whether the ALB will fly farther or intensify attacks on other host species. Other questions raised by differences between South Carolina and other, more northern, outbreak sites include possible changes in the beetle’s life cycle and flight periods.

Authorities noted the extremely difficult conditions, which impede survey and control efforts – which I described in an earlier blog.

One innovation was sharing of resources: staff from the North Carolina and Tennessee departments of agriculture went to South Carolina to help with surveys. The Resource Sharing Initiative was started a few years ago as a collaborative effort of APHIS and the NPB. This was the first time states tried it. There were several issues that had to be worked out. One issue was the long time it takes to train people to recognize ALB symptoms. All three states’ officials said the project was worthwhile.

black walnut in Fairfax County, VA — in an area where thousand cankers disease has been present for more than a decade; photo by FT Campbell

3) Recinding quarantines of thousand cankers disease of walnut

States which adopted quarantines targetting this insect/pathogen complex a decade ago now think that it poses little risk to black walnut (Juglans nigra) growing in its native range (as distinct from trees planted in the West). Several are in the process of rescinding their quarantines. I think these states have considered the science carefully and are taking the appropriate action.

4) Nursery self-certification – System Set Up; Will Nurseries Participate? Will Customers Support the Process?

Craig Regelbrugge of AmericanHort noted that the SANC program has now been officially launched – it has graduated from being a pilot program. [SANC stands for Systems Approach to Nursery Certification] Participants are exploring incentives to recruit wider participation by nurseries that produce plants and how to get support from plant retailers. SANC is conceived as an elite program for the best nurseries and marketplace leaders. It was never intended to be a remedial program to clean up problem issues such as the P. ramorum debacle. To work, it seems to me, SANC will need to find a way to persuade customers to want to pay more for quality plants. Hence the critical importance of getting retailers involved.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Resistance Breeding – a Useful Strategy

Port-Orford cedar resistance trials at Dorena Center; photo courtesy of Richard Sniezko, USFS

I have written several times about the importance of the United States adopting a comprehensive program to address all aspects of introduced forest pests including breeding of trees resistant to the introduced pests. See Fading Forests III from seven years ago; an earlier blog; and Bonello et al. 2020 (full citation at end of blog), in which we proposed the creation of a federal Center for Forest Pest Control and Prevention to implement end-to-end integrated responses to forest pest invasions. A similar view is being voiced internationally; see, e.g., Buggs et al. 2020.

I have seen efforts to restore pest-decimated tree species to the forest lagging. I complained in a recent blog link that the recent USDA Forest Service report on invasive species (Poland et al. 2021) gave a misleading impression that significant effort was being made on resistance breeding to address several pests.

The USFS does support breeding trees resistant to pests, but in my view this support has been inadequate – including in the USFS report. Others think so, too — see Sniezko and Koch 2017. This insufficiency only grows, despite USDA claims to recognize that promoting resistance to introduced forest pests is an essential component of achieving its strategic goals of maintaining or enhancing productivity while ensuring responsible stewardship of resilient natural resources (Federman and Zankowski 2019).

Work at the Dorena Genetic Research Center

The principal and most notable and successful resistance breeding effort has been the Dorena Genetic Resource Center. The Center was established by, and is funded through the USFS Region 6 Genetic Resource (part of the National Forest System) and Forest Health Management programs. The Center has a solid foundation in the expertise and facilities needed to carry out breeding efforts. Also, it has a 50-plus-year track record.

Dorena has supported breeding of white (five-needle) pines and Port-Orford cedar. Dorena also now provides expertise and some facilities to partners exploring a) breeding Oregon ash to resist the emerald ash borer and b) two Hawaiian trees (koa and ‘ōhi‘a) to resist introduced pathogens (see below). Dorena staff is assisting low-budget, shoe-leather efforts to explore breeding of other trees at risk to non-native pests. These programs are described briefly in Box 8 of Poland et al. 2021. Despite this valuable effort with proven success funding to continue Dorena’s work is tenuous.

White Pine Blister Rust — Efforts to develop resistance to white pine blister rust (WPBR) DMF in five-needle pine species (nine grow across the country) began more than 50 years ago. Currently Dorena focuses on whitebark pine (Pinus albicaulis), denizen of high elevations in the West, along with western white pine (P. monticola), sugar pine (P. lambertiana) , limber pine (P. flexilis), southwestern white pine (P. strobiformis), and foxtail pine (P. balfouriana). Testing whitebark for resistance to WPBR began in 2002. Seedling families from >1,300 parent trees are in various stages of testing. The discovery that some whitebark populations have much higher levels and frequency of partial resistance has allowed rapid distribution of seed. The first restoration plantings in the Pacific Northwest were in 2009.

3-year old seedlings of whitebark pine at Crater Lake National Park; photo by Richard Sniezko, USFS

There are many collaborators – especially the National Park Service, Washington State’s Department of Natural Resources, several Tribes, the Whitebark Pine Ecosystem Foundation, and American Forests. However, planting has been hampered by the high cost of restoration in these high elevation ecosystems, lack of frequent good seed crops on the resistant parent trees, and lack of approval to plant in designated wilderness areas. In the areas with the highest levels of resistant parents, management activities that encourage natural regeneration might be successful. In late 2020 the U.S. Fish and Wildlife Service proposed to list whitebark pine as a Threatened species

Oregon ash (F. latifolia) has not yet been attacked by the emerald ash borer, but all expect EAB to spread to the West coast. Dorena and cooperators have already collected seed from ash trees in Oregon and obtained funding for additional collections, to include Washington and California. The seeds are being stored at both Dorena and the USDA Agriculture Research Service facility at Ft. Collins, Colorado. Seedlings from two dozen families have also been planted at Dorena and a center operated by Washington State University, plus at a USFS Northern Research Station research center in Ohio, where EAB is established and they can be tested for resistance to the insect’s attack.

Koa and ‘ōhi‘a in Hawaii — Regeneration of the koa tree (Acacia koa) has been undercut by the koa wilt pathogen, Fusarium oxysporum f. sp. koae. Dorena initiated efforts with the Hawaii Agricultural Research Center (HARC) to respond in 2003. There has been rapid progress screening seedlings to identify resistant parent trees establishing seed orchards, delineating seed zones, and releasing seed with confirmed levels of resistance for reforestation and restoration (Sniezko and Koch 2017; see also Dudley et al. 2020).

‘ōhi‘a trees killed by rapid ‘ōhi‘a death; photo courtesy of J.R. Friday

When the threat to Hawaii`s most widespread tree ‘ōhi‘a (Metrosideros polymorpha) from rapid ‘ōhi‘a death (ROD) pathogens became apparent, the Dorena staff provided advice on breeding strategies. Its Center Geneticist is part of an ad hoc resistance team. Scientists have identified surviving trees in stands affected by ROD on the Big Island using a variety of methods. These include aerial surveys by drones and fixed-wing aircraft. They then began collecting seeds and cuttings. As of spring 2021, they have collected cuttings or seeds from more than 300 ‘ōhi‘a trees belonging to five varieties. The effort is low-cost, using Americorps volunteers coordinated by a single full-time person, a USFS employee. The program is still in its infancy. It will have to find funding to expand its scope to an operational resistance program once more information on resistance is has been obtained.

Other Efforts

Most other breeding programs are small and poorly funded. In fact, they have been described by one USFS scientist as “hobby projects” of a few scientists determined to try this strategy. Not only are efforts minimal; but also retirement of those few scientists can bring an end to the individual project.

There were greater efforts in the past. I have a document (of unknown origin) from 2011 that describes breeding efforts funded by both the National Forest System and USFS Research and Development. Table 1 listed 16 projects for western conifers; Table 2 listed 32 projects funded by R&D. During this period, the USFS provided start-up funds for the Healthy Forests Initiative, a consortium that sought to prove the concept that genetic engineering could quickly produce an American chestnut able to live and reproduce in its native range. This support was in addition to support for The American Chestnut Foundation backcross hybridization program link.

Part of the problem is the longstanding decline in funding and staffing of USFS research program. A graph in Chapter 6 of FFIII shows the decline in numbers of forest entomologists and pathologists over the 20-year period 1985–2007. Wheeler et al. 2015 discuss the parallel decline in tree breeders and geneticists (citation at end of this blog).

Cuts continue. Funding for research conducted by the USFS Research stations on ten non-native pests decreased from $10 million in Fiscal Year 2010 to just $2.5 million in Fiscal Year 2020 – a cut of more than 70%. I have lobbied for increased appropriations for decades.

The need for new approaches and increased effort is more widely asserted. One example is the group I am working with that promotes a new Center for Forest Pest Control and Prevention. Link A second example is the University of Florida’s recent conference of forest health researchers, representatives of the forest products industry, non-governmental organizations, and leaders of universities with forest-resource programs. This group suggested forming a united organization to increase capacity to improve forest health research. An article outlining the proposal is available here.

The Role of Biotechnology in Breeding Resistant Trees

what happened? same tree a few years apart — a TACF hybrid chestnut

Part of the discussion on forest research explores the proper role of biotechnology in tree species’ restoration. Purdue University hosted a related workshop in April 2021, in which I took part. (“Society and Policy Influences on Biotechnology Risk Assessment for Restoration of Threatened Forest Tree Species”). I hope participants will soon publish a paper based on our discussions.

Meanwhile, Revive & Restore, a wildlife conservation organization promoting the incorporation of biotechnologies into standard conservation practice, sponsored a workshop in June 2020. The 57 conservationists, wildlife biologists, restoration specialists, conservation geneticists, ethicists, and social scientists who participated agreed on an appropriate structure for using biotechnology. These included:

  • A broader definition of risk and application of new risk assessment tools;
  • Consideration of the risks of not taking action, as well as going ahead with a proposal;
  • Transparency about social and cultural values and engaging stakeholders
  • Monitoring results to ensure actions have been successful, manage uncertainty, and codify lessons learned.

In the literature I read, the workshops I participate in (e.g., National Academy of Sciences 2019; Purdue’s), biotechnology is seen as a potentially helpful set of tools that must be integrated into broader programs, all having research, tree improvement, restoration, and reforestation components. Such programs must have sustained management and resources stemming from public support. (For more complete descriptions of components of a resistance breeding program, see Sniezko and Koch 2017 (full reference below); or Chapter 6 of FFIII). Activities that must be incorporated include:

  • Germplasm collection and storage (applying the varied strategies that are appropriate);
  • Research to detect and test potential resistance or tolerance;
  • Research to identify techniques for producing propagules;
  • Planting sites that will be secure for decades;
  • Site preparation & planting;
  • Post-planting maintenance; and
  • Monitoring to determine success or problems

During the Purdue workshop, and in my writing, I have emphasized the principal hindrance to progress is the lack of resources being allocated to resistance breeding. USFS and academic scientists determined to pursue breeding approach must scrounge for funds. I describe some of their efforts below.

Collaborations on Breeding for Specific Species

(still) healthy hemlocks in Cook Forest State Park, Pennsylania; photo by F.T. Campbell

USFS Hemlock Woolly Adelgid (HWA) Initiative [apparently no website]

This initiative was developed under the leadership and direction of FHP staff. The list of cooperators includes dozens of state, federal, university and private organizations. The annual budget has averaged between $2.5 and $3.5 million. Most resources are apparently allocated to biocontrol, but some funding has been provided for breeding activities, including:

  • Seed collection and storage for both Carolina and eastern hemlocks. Two seed orchards have been established in western North Carolina. I believe they are protected from the hemlock woolly adelgid (HWA) by application of pesticides.
  • Research on these tree species’ silviculture and ecology, including manipulation of sunlight levels to protect seedlings from the adelgid and promote growth

The 2021-2025 Program – currently under review – foresees more integrated pest management applying biocontrol, chemical control, and silviculture. It aims to maintain the health of hemlocks being used in breeding programs and “explore” hemlock replacement options, such as hybrids or HWA-tolerant hemlocks (Mayfield et al. 2021). This effort is encouraging, but I have heard complaints from academics that they can’t get funding to pursue what they regard as promising breeding strategies.

Other small programs to breed resistant hemlocks are under way. The Forest Restoration Alliance (formerly the Alliance to Save Threatened Forests) asks citizens to identify surviving hemlocks and balsam firs. The Alliance has collected and propagated both cuttings and seeds and is testing their resistance.

Ash and Other Trees of the Upper Midwest

To date, few resources have been allocated to resistance breeding of ash. Between 2003 and 2017, only about 7% of research funds allocated to ash and emerald ash borer DMF have been devoted to host resistance. Of the host resistance research, 61% applied to identifying mechanisms, 14% to use of transgenics to develop resistance, only 7% (0.5% of the total research) has supported actual breeding for resistance (Sniezko and Koch 2017).

In May 2021 the USFS announced it was seeking funds from the water-focused Great Lakes Restoration Initiative. The USFS expects to receive up to $5.4 million for reforestation, ecosystem restoration. and forest health improvements on non-federal lands in the Great Lakes basin. (This includes parts of the states of Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania and Wisconsin). The announcement doesn’t mention resistance breeding for ash, beech, hemlock, or other trees in the region. I hope some of the new funds will be allocated to this strategy.

“lingering” ash; photos courtesy of Jennifer Koch, USFS

In an encouraging show of entrepreneurship, USFS scientists and others have formed the Great Lakes Basin Forest Health Collaborative – a partnership with Holden Forests and Gardens, American Forests, and USFS (Kappler et al. 2021). The purpose of the Collaborative is to advance resistance breeding for these important tree species. The initial focus is on the five ash species in the region, especially black ash (Fraxinus nigra) link to blog The Collaborative is recruiting a network of partners, and will provide training and technology transfer. The partners will provide volunteers and other resources. Partners do not have to be within the region if their work helps the Great Lakes Basin, but plantings have to be there.

Partners will help identify survivor trees with potential resistance (e.g., “lingering” ash); establish clone banks and/or seed orchards; and manage seed collections. Each partner will operate independently, but in collaboration with the others. The initial focus is on obtaining representative seed collections of ash and hemlock. Then cloning, testing resistance, and crosses can begin. Eventually select lines will be chosen for bulking up and reintroduction.

In future the Collaboration hopes to engage in breeding hemlocks and identifying beech trees that remain healthy in areas heavily impacted by beech leaf disease (BLD).

Other efforts under way include the Monitoring and Managing Ash (MaMA) Program, based in the Ecological Research Institute in New York State.

Beech trees with resistance to beech bark disease (BBD) were identified as early as the 1980s, but a breeding program was begun only in 2002. A collaborative, multi-agency effort has resulted in the establishment of five regional American beech seed orchards with four others in progress as of 2017. Partners provide a cost-effective process for identifying resistant parent trees. State and National Forest personnel surveyed natural forests for candidate trees and then tested each tree and identified markers associated with resistance (Sniezko and Koch 2017).

Challenges Beyond Breeding

Large-scale restoration of tree species across much of their ranges will require significant inputs of funds, over long time periods, as well as resolving daunting logistical issues.

Some think the most likely scenario will be to plant focal areas, or islands, that can aid future natural regeneration (Sniezko and Koch 2017). The American Chestnut Foundation (TACF) anticipates it will take 1,000 years to re-establish American chestnut DMF across its range through a process of three phases: long-term research and demonstration plantings; a relatively small-scale public horticultural program using trees and/or pollen made available by TACF; and a larger-scale public restoration program using progeny from years of outcrossing and production. (This assumes APHIS approves release of the transgenic “Darling 58” tree, plus – I believe – progress in developing resistance to root disease caused by Phytophthora cinnamomi). Already good progress using focal areas has started with several white pine species, and a national plan is in the works for whitebark pine.

Such efforts will require access to land that can be protected from other uses, e.g., development for decades or centuries. Also it will require management of sites to protect propagules from browsing wildlife (deer, rabbits!), provide adequate water and light, and probably give plantings a competitive advantage in relation to other plants growing there …

non-resistant elms will grow anywhere! photo by F.T. Campbell

And there is the issue of how a relatively small number of resistant propagules will succeed in spreading their improved genetics in areas where non-improved elm, ash, beech and hemlock are reproducing naturally. Is reproduction of unimproved trees likely to continue in the face of new and old pests’ spread? If biocontrol agents succeed in reducing a pest’s impact on a host tree species, will that enhance the competitive ability of unimproved trees to the disadvantage of genetically improved conspecifics? What are realistic expectation for programs, and for their success?

Criteria for Success

Woodcock, Marzano, and Quine (2019) analyzed five breeding programs to identify aspects that contribute to success. Four of the programs were in North America; they targetted chestnut, western white pines, and Sitka spruce & white pine weevil. They concluded that 

  • Success is influenced by the level of resistance present in individual trees, the frequency of resistance in the population, and the heritability of resistance.
  • It is important to consider current and potential future risks to the species in addition to the target pest or pathogen— the benefits of trees resistant to a specific threat are negated if it is susceptible to other threats.
  •  Demand [for a resistant tree to plant] should be evaluated, and the priorities of potential supporters and end users should inform the methods used to produce resistant trees.
  •  Operational deployment should balance the urgency of the threat with the consequences if resistant material does not perform as hoped. Urgency might differ for an emerging pest or pathogen.
  • Deployment strategies should be informed by the risks of imposing a strong selection pressure on the pest or pathogen to evolve to overcome host resistance, and by potential impacts on partially resistant trees.
  • Continued monitoring of field performance is important for evaluation, and can help to identify and mitigate emerging threats (e.g. new pathogen strains).

SOURCES

Bonello, P., F.T. Campbell, D. Cipollini, A.O. Conrad, C. Farinas, K.J.K. Gandhi, F.P. Hain, D. Parry, D.N. Showalter, C. Villari, and K.F. Wallin. 2020. Invasive tree pests devastate ecosystems – A proposed new response framework. Frontiers in Forests and Global Change. January 2020. Volume 3, Article 2 

Buggs, R.J.A. 2020 Changing perceptions of tree resistance research. Plants, People, Planet. 2020; 2: 2– 4. https://doi.org/10.1002/ppp3.10089

Dudley, N.; Jones, T.; Gerber, K.; Ross-Davis, A.L.; Sniezko, R.A.; Cannon, P.; Dobbs, J. 2020. Establishment of a Genetically Diverse, Disease-Resistant Acacia koa A. Gray Seed Orchard in Kokee, Kauai: Early Growth, Form, and Survival. Forests 2020, 11, 1276

Federman, S. and P. Zankowski. 2019. Strategic science planning for responsible stewardship and plant protection at the U.S. Department of Agriculture. Plants, People, Planet © New Phytologist Trust 2019;00:1–4. https://doi.org/10.1002/ ppp3.10075

Kappler, R., C. Blashka, D. burke, E. Hall, C. Pike, J. Koch. 2021. Great Lakes Basin Forest Health Collaborative: What it’s all about. North American Forest Insect Work Conference 28 May 2021

Mayfield, A.E. III, Salom, S., Jetton, R., Havill, N., Rhea, R., and Mausel, D. 2021. North American Forest Insect Work Conference 28 May 2021. Spread, impact and management of HWA in eastern North America

National Academies of Sciences, Engineering, and Medicine. 2019. Forest Health and Biotechnology: Possibilities and Considerations. Washington, DC: The National Academies Press. https://doi.org/10.17226/25221.

Poland, T.M., P. Patel-Weynand, D.M Finch, C.F. Miniat, D.C. Hayes, V.M Lopez, editors. 2021. Invasive Species in Forests and Rangelands of the United States. A Comprehensive Science Synthesis for the US Forest Sector. Springer

Sniezko, R.A. and J. Koch. 2017. Breeding trees resistant to insects & diseases: putting theory into application. Biol Invasions. 2017. 19:3377-3400. DOI 10.1007/s10530-017-1482-5

Wheeler, N.C., K.C. Steiner, S.E. Schlarbaum, D.B. Neale. 2015. The Evolution of Forest Genetics and Tree Improvement Research in the United States, Journal of Forestry, Volume 113, Issue 5, September 2015, Pages 500–510, https://doi.org/10.5849/jof.14-120

Woodcock, P., M. Marzano, C.P. Quine. 2019. Key lessons from resistant tree breeding programmes in the Northern Hemisphere. Annals of Forest Science (2019)76:51 https://doi.org/10.1007/s13595-019-0826-y

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

On the Rise: US Imports & the Risks of Tree-killing Pests

containers at Port of Long Beach; photo courtesy of Bob Kanter, Port of Long Beach

Here I update information on two of the major pathways by which tree-killing pests enter the United States: wood packaging and living plants (plant for planting).

Wood Packaging

Looking at wood packaging material, we find rising volumes for both shipping containers – and their accompanying crates and pallets; and dunnage.

Crates and pallets – Angell (2021; full citation at the end of the blog) provides data on North American maritime imports in 2020. The total number of TEUs [a standardized measure for containerized shipment; defined as the equivalent of a 20-foot long container] entering North America was 30,778,446.U.S. ports received 79.6% of these incoming containers, or 24,510,990 TEUs. Four Canadian ports handled 11.4% of the total volume (3,517,464 TEUs; four Mexican ports 8.9% (2,749, 992 TEU). Angell provides data for each of the top 25 ports, including those in Canada and Mexico.

To evaluate the pest risk associated with the containerized cargo, I rely on a pair of two decade-old studies.  Haack et al. (2014) determined that approximately 0.1% (one out of a thousand) shipments with wood packaging probably harbor a tree-killing pest. Meissner et al. (2009) found that about 75% of maritime shipments contain wood packaging. Applying these calculations, we estimate that 21,000 of the containers arriving at U.S. and Canadian ports in 2020 might have harbored tree-killing pests.

While the opportunity for pests to arrive is obviously greatest at the ports receiving the highest volumes of containers with wood packaging, the ranking (below) does not tell the full story. The type of import is significant. For example, while Houston ranks sixth for containerized imports, it ranks first for imports of break-bulk (non-containerized) cargo that is often braced by wooden dunnage (see below). Consequently, Houston poses a higher risk than its ranking by containerized shipment might indicate.

Also, Halifax Nova Scotia ranks 22nd for the number of incoming containerized shipments (258,185 containers arriving). However, three tree-killing pests are known to have been introduced there: beech bark disease (in the 1890s), brown spruce longhorned beetle (in the 1990s), and European leaf-mining weevil (before 2012) [Sweeney, Annapolis 2018]

The top ten ports receiving containerized cargo in 2020 were

Port                                         2020 market share                2020 TEU volume

Los Angeles                           15.6%                                      4,652,549

Long Beach                            13%                                         3,986,991

New York/New Jersey         12.8%                                      3,925,469

Savannah                             7.5%                                        2,294,392

Vancouver BC                        5.8%                                        1,797,582

Houston                                   4.2%                                        1,288,128

Manzanillo, MX                      4.1%                                        1,275,409

Seattle/Tacoma    4.1%                                        1,266,839

Virginia ports                        4.1%                                        1,246,609

Charleston                             3.3%                                        1,024,059

Import volumes continue to increase since these imports were recorded. U.S. imports rose substantially in the first half of 2021, especially from Asia. Imports from that content reached 9,523,959 TEUs, up 24.5% from the 7,649,095 TEUs imported in the first half of 2019. The number of containers imported in June was the highest number ever (Mongelluzzo July 12, 2021).

Applying the calculations from Haack et al. (2014) and Meissner et al. (2009) to the 2021 import data, we find that approximately 7,100 containers from Asia probably harbored tree-killing pests in the first six months of the year. (The article unfortunately reports data only for Asia.) Industry representatives quoted by Mongelluzzo expect high import volumes to continue through the summer. This figure also does not consider shipments from other source regions.

Dunnage on the pier at Port of Houston; photo by Port of Houston

Infested dunnage – Looking at dunnage, imports of break-bulk (non-containerized) cargo to Houston – the U.S. port which receives the most – are also on the upswing. Imports in April were up 21% above the pandemic-repressed 2020 levels.

Importers at the port complain that too often the wooden dunnage is infested by pests, despite having been stamped as in compliance with ISPM#15. CBP spokesman John Sagle confirms that CBP inspectors at Houston and other ports are finding higher numbers of infested shipments. CBP does not release those data, so we cannot provide exact numbers (Nodar, July 19, 2021).

The Houston importers’ suspicion has been confirmed by data previously provided by CBP to the Continental Dialogue on Non-Native Insects and Diseases. From Fiscal Year 2010 through Fiscal Year 2015, on average 97% of the wood packaging (all types) found to be infested bore the stamp. CBP no longer provides data that touch on this issue.

Detection of pests in the dunnage leads to severe problems. Importers can face fines up to the full value of the associated cargo. Often, the cargo is re-exported, causing disruption of supply chains and additional financial losses (Nodar, July 19, 2021).

In 2019 importers and shippers from the Houston area formed an informal coalition with the Cary Institute of Ecosystem Studies to try to find a solution to this problem. The chosen approach is for company employees to be trained in CBP’s inspection techniques, then apply those methods at the source of shipments to identify – and reject – suspect dunnage before the shipment is loaded.  In addition, the coalition hopes that international inspection companies, which already inspect cargo for other reasons at the loading port will also be trained to inspect for pests.  Steps to set up such a training program were interrupted by the COVID-19 pandemic, but are expected to resume soon (Nodar, July 19, 2021).

Meanwhile, the persistence of pests in “treated” wood demands answers to the question of “why”. Is the cause fraud – deliberate misrepresentations that the wood has been treated when it has not? Or is the cause a failure of the treatments – either because they were applied incorrectly or they are inadequate per se?

ISPM#15 is not working adequately. I have said so.  Gary Lovett of the Cary Institute has said so (Nodar July 19, 2021). Neither importers nor regulators can rely on the mark to separate pest-free wood packaging from packaging that is infested.

APHIS is the agency responsible for determining U.S. phytosanitary policies. APHIS has so far not accepted its responsibility for determining the cause of this continuing issue and acting to resolve it. Preferably, such detection efforts should be carried out in cooperation with other countries and such international entities as the International Plant Protection Convention (IPPC) and International Union of Forest Research Organizations (IUFRO). However, APHIS should undertake such studies alone, if necessary.

In the meantime, APHIS and CBP should assist importers who are trying to comply by facilitating access to information about which suppliers often supply wood packaging infested by pests. The marks on the wood packaging includes a code identifying the facility that carried out the treatment, so this information is readily available to U.S. authorities.

Plants for Planting

A second major pathway of pest introduction is imports of plants for planting. Data on this pathway are too poor to assess the risk – although a decade ago it was found that the percentage of incoming shipments of plants infested by a pest was 12% – more than ten times higher than the proportion for wood packaging (Liebhold et al. 2012).

According to APHIS’ annual report, in 2020 APHIS and its foreign collaborators inspected 1.05 billion plants in the 23 countries where APHIS has a pre-clearance program. In other words, these plants were inspected before they were shipped to the U.S.  At U.S. borders, APHIS inspected and cleared another 1.8 billion “plant units” (cuttings, rooted plants, tissue culture, etc.) and nearly 723,000 kilograms of seeds. Obviously, the various plant types carry very different risks of pest introduction, so lumping them together obscures the pathway’s risk. The report does not indicate whether the total volume of plant imports rose or fell in 2020 compared to earlier years.

SOURCES

Angell, M. 2021. JOC Rankings: Largest North American ports gained marke share in 2020. June 18, 2021. https://www.joc.com/port-news/us-ports/joc-rankings-largest-north-american-ports-gained-market-share-2020_20210618.html?utm_campaign=CL_JOC%20Port%206%2F23%2F21%20%20_PC00000_e-production_E-103506_TF_0623_0900&utm_medium=email&utm_source=Eloqua

Haack R.A., Britton K.O., Brockerhoff, E.G., Cavey, J.F., Garrett, L.J., et al. (2014) Effectiveness of the International Phytosanitary Standard ISPM No. 15 on Reducing Wood Borer Infestation Rates in Wood Packaging Material Entering the United States. PLoS ONE 9(5): e96611. doi:10.1371/journal.pone.0096611

Liebhold, A.M., E.G. Brockerhoff, L.J. Garrett, J.L. Parke, and K.O. Britton. 2012. Live Plant Imports: the Major Pathway for Forest Insect and Pathogen Invasions of the US. www.frontiersinecology.org

Meissner, H., A. Lemay, C. Bertone, K. Schwartzburg, L. Ferguson, L. Newton. 2009. Evaluation of Pathways for Exotic Plant Pest Movement into and within the Greater Caribbean Region. A slightly different version of this report is posted at 45th Annual Meeting of the Caribbean Food Crops Society https://econpapers.repec.org/paper/agscfcs09/256354.htm

Mogelluzzo, B. July 12, 2021. Strong US imports from Asia in June point to a larger summer surge.

Nodar, J. July 19, 2021. https:www.joc.com/breakbulk/project-cargo/breakbult-volume-recovery-triggers-cbp-invasive-pest-violations_20210719.htm 

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

USFS report: treatment of introduced forest pests

still-healthy hemlocks in Cook Forest State Park, PA; photo by F.T. Campbell

In February the USFS published a lengthy analysis of invasive species: Invasive Species in Forests and Rangelands of the United States. A Comprehensive Science Synthesis for the US Forest Sector (Poland et al. 2021; full citation at the end of the blog). The book is available for download at no cost here.

In a separate blog, I evaluated several aspects of the report as they apply to invasive species generally. Here I focus on invasive insects and pathogens that attack North American tree species (that is, forest pests).

As I said in the separate blog, I doubt that the book will stimulate policy-makers to increase Forest Service resources allocated to invasive species research, much less management. Sections 14.5 and 16.5 of the report state that the continued absence of a comprehensive investigation of the impacts of invasive species, especially the full value of ecosystem services lost, is a barrier to policymakers seeking to develop priorities and realistic management strategies.

I think the book’s editors tried to provide as much information about impacts as possible given existing knowledge. But the book’s length, comprehensive inclusion of all bioinvaders, organizational structure, and the detailed discussions of theories and models reduce the contribution the book might make to management decisions. I did not find “lessons learned” that could be applied in the policy realm. 

Chapters address impacts in terrestrial and aquatic systems; impacts on ecosystem processes; impacts on various sectors of the economy and cultural resources; interactions with climate change and other disturbances; management strategies for species and landscapes; tools for inventory and management. Each chapter evaluates the current status of knowledge about the topic and suggests research needs. There are also summaries of the invasive species situation in eight regions.

The choice to organize the book around the chapters listed above means that some information one might expect to find in a book about invasive species is scattered or even absent. This is not a good resource for concise descriptions of individual invasive species and their impacts. That information is scattered among the chapters depending on whether some aspect of the species was chosen to illustrate a scientific challenge or success. The regional summaries partially remedy this problem – but they do not provide perspective on organisms that have invaded more than one region, e.g., emerald ash borer or white pine blister rust. To some extent, information about individual species is provided in the several subchapters on forest insects and pathogens. Or the reader of the PDF version can use the word search function!

Of course, information on several individual high-profile bioinvaders can be found in other publications; see the species write-ups and references posted at www.dontmovefirewood.org. Under these circumstances, a description of invasive species impacts from the ecosystem perspective is a welcome addition. I have long wished for a “crown to root zone” description of invasive species’ impacts.

HWA-killed hemlocks in Linville Gorge, NC; photo by Steven Norman, USFS

In this blog, I will focus on issues that the report raises that I found most interesting.

Information in the Report on Invasive Insects & Pathogens that Attack North American Trees

At several places the report states that non-native pests that have the potential to threaten the survival of an entire tree genus should be a high priority (p. 136) (what actions should be prioritized are not specified). They name the emerald ash borer (EAB) and Dutch elm disease. Elsewhere, EAB and hemlock woolly adelgid (HWA) are described as among the most significant threats to forests in the Eastern U.S. While EAB and HWA have certainly received considerable attention from the Forest Service, threats to elm have not. (I regret that the timing of the report precluded reference to Kevin Potter’s priority-setting publication. Potter is not listed as a co-author of the book.)

Hemlock woolly adelgid, emerald ash borer, chestnut blight, white pine blister rust (WPBR), and laurel wilt are cited as examples of highly virulent, host-specific agents that kill dominant, abundant, and ecologically unique hosts (p.18), resulting in exceptionally severe long-term impacts. WPBR and HWA specifically can have profound and far-reaching negative effects on ecosystem structure and function. These can rise to the level of an irreversible change of ecological state (p. 97). Of this list, no federal agency has allocated many resources to efforts to slow the spread of laurel wilt. The Forest Service is certainly tracking its spread and impacts.

Exaggerations or Errors

I think the report exaggerates the level of resources allocated to host resistance breeding. The report mentions programs targetting Dutch elm disease, beech bark disease, EAB, HWA and laurel wilt. It describes programs for white pines and Port-Orford cedar as examples of success. However, I would say that all the programs, except American chestnut, are starved for funds and other resources. The report’s authors concede this on p. 195.

TACF American chestnut in field trial; photo by F.T. Campbell

I think the report is too optimistic about the efficacy – so far – of biocontrol agents targeting HWA & EAB. On the other hand, I appreciate the report’s recognition that application of augmentative biocontrol of the Sirex woodwasp is more complicated in North America than in Southern Hemisphere countries (p. 162).

I am concerned about the statement that many plant pathogens are transported, but few have major impact. Examples in the U.S. are said to be WPBR, chestnut blight, and Phytophthora ramorum (p. 97). However, the report does not mention laurel wilt – which has a broad host range; nor rapid ‘ōhi‘a death — which threatens the most widespread tree species on the Hawaiian Islands. Nor does it mention several pathogens attacking single tree species, including beech bark disease, Port-Orford cedar root disease, and butternut canker. The report was written before recognition of beech leaf disease. The report notes that the three diseases it did mention have huge impacts. I am greatly disappointed that the report does not address how scientists and managers should deal with this “black swan” problem other than long discussions of data gaps, and ways to improve models of introduction and spread.

In addition, I am concerned that the discussion of economic factors that influence trade flows and accompanying invasive species (p. 308) focusses too narrowly on inspection alone, rather than other strategies for curtailing introduction. This section also shortens a description of the point made in Lovett et al. (2016). The report notes that Lovett et al. (2016) say that rates of introduction of wood-boring species decreased after ISPM#15 was implemented. However, the report leaves out the major caveat in that paper and the studies by Haack et al. (2014) and Leung et al. (2014) on which it is based: the reduction was insufficient to protect America from damaging introductions! [A further error has crept in: the Haack study explicitly excluded imports from China from their calculations. The Lovett paraphrase is not really clear on this matter.]

Curiosities/Concerns Re: Regional Write-Ups

I wish the sections on the Northwest and Southwest region discussed why areas with so many characteristics favoring introduction of plant pests – major ports, extensive transportation networks, major horticultural industry, extensive agriculture, and abundant urban and native forests – have so few damaging forest pests. (Admittedly, those present are highly damaging: white pine blister rust, sudden oak death, Port-Orford cedar root disease, pitch canker, balsam woolly adelgid, larch casebearer, polyphagous shot hole borer (I add Kuroshio shot hole borer), and banded elm bark beetle). The report does mention the constant threat of introduction of the European and Asian gypsy moths. (The Entomological Society of America has decided to coin a new common name for these insects; they currently to be called by the Latin binomial Lymatria dispar). The report notes that 22 species of non-native bark and ambrosia beetles have recently been introduced in the Southwest.

The report cites a decade-old estimate by Aukema et al. (2010) in saying that a small proportion of introduced pest species has killed millions of trees or pushed ecologically foundational species toward functional extinction. The figure was 14% of the more than 450 non-native forest insect species. I greatly regret that overlapping preparation and publication periods precluded inclusion of data from studies by Potter, Guo, and Fei.  http://nivemnic.us/what-fia-data-tell-us-about-non-native-pests-of-americas-forests/

Section 7.3 of the report discusses frameworks for setting priorities. It identifies five factors: 1) pest species having the greatest negative impacts; 2) uniqueness of the affected ecosystem or community; 3) state of the invasion in space and time; 4) management goals; 5) availability of effective tools. Examples of species meeting these criteria include EAB and Dutch elm disease (pest threatens entire host genus); white pine blister rust on whitebark pine (key species in a system with low arboreal diversity).

The report notes increasing understanding of critical aspects of several important pests’ biology and host interactions – but it does not sufficiently acknowledge the decades of effort required to achieve this knowledge. The time required for additional scientific advances will probably be equal or greater, given falling number of “ologists” in government and academia.

I appreciate inclusion of a discussion (Sections 8.3.1 and 8.3.2) on breeding trees resistant to introduced pests

dead Port-Orford cedar in Redwoods National Park; photo by Richard Sniezko, USFS

This section states that host resistance, forest genetics, and tree improvement might be the most effective approaches to managing many established pests. The section says such breeding does not require the use of genetically modified organisms, although transgenic or gene editing technologies can provide useful tools. I appreciate the report conceding that necessary infrastructure and expertise has been declining for two decades (p. 195).

In discussing international cooperation to reduce transport of invasive species, the report refers to increasing availability of data allowing identification of potentially damaging species in their regions of origin. Again, since this chapter was written, the Forest Service has increased its engagement on this approach: the USFS International Program is supporting sentinel plantings managed by the International Plant Sentinel Network (http://www.plantsentinel.org) … see my recent blog here.

SOURCE

Poland, T.M., P. Patel-Weynand, D.M Finch, C.F. Miniat, D.C. Hayes, V.M Lopez, editors. 2021. Invasive Species in Forests and Rangelands of the United States. A Comprehensive Science Synthesis for the US Forest Sector. Springer

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm