Threats to America’s Magnificent Oaks

Oak trees are immensely symbolic to many people and many are magnificent. Congress even designated the red oak as America’s “national tree”.

5504878

Photo of Q. rubra leaves by Becca MacDonald, Sault College; www.bugwood.org

 

Of course, there are many kinds – from those that span many states to those that grow in just some special areas. USDA’s Plants database lists more than 300 native species for the U.S. alone.  Many provide substantial ecosystem services and all parts of the country would be poorer without them.

Despite our oaks’ importance, we are doing far too little to protect them from the full range of non-native insects and diseases that pose threats.

CURRENT THREATS IN THE EAST

In the East (from the Atlantic to the Great Plains), oaks are under attack from at least four non-native pests:

  • One of these, the European gypsy moth (Lymantria dispar), is the target of major containment and suppression programs operated by USDA Animal and Plant Health Inspection Service (APHIS), the US Forest Service and the states. In fact, the US Forest Service spends half of its entire budget for studying and managing non-native pests on the European gypsy moth. In part, this is because the European gypsy moth is so widespread, with outbreaks from Nova Scotia to Wisconsin and south across eastern Ohio to Virginia. (See the map of EGM range here). It also attacks a wide range of tree and shrub species.

But other oak-killing insects and diseases, some with the potential to be at least as damaging, receive far fewer resources.

  • Oak wilt (caused by the fungus Ceratocystis fagacearum) is widespread from central Pennsylvania across Iowa, down the Appalachians in West Virginia and North Carolina-Tennessee border, in northern Arkansas and with large areas affected in central Texas. There is an isolated outbreak in New York State.  (See map here). According to the US Forest Service, oak wilt is one of the most serious tree diseases in the eastern U.S.  It attacks primarily red oaks and live oaks. It is spread by both bark-boring beetles and root grafts.
  • From Long Island along the coast into Nova Scotia and into central Massachusetts, oaks are being killed by the winter moth (Operophtera brumata). Like the gypsy moth, the winter moth has a wide host range. (For more information, see here). A small program led by Joseph Elkington of the University of Massachusetts has focused on biocontrol.  Biocontrol agents have successfully reduced winter moth damage in Nova Scotia and the Pacific Northwest. First results are promising in New England.

CURRENT THREATS IN THE WEST

In the West, millions of oaks have been killed by several pathogens and insects that are established and spreading; and additional threats loom.

  • Coast live oaks, canyon live oaks, California black oaks, Shreve’s oaks, and tanoaks growing in coastal forests from Monterey County north to southern Oregon that catch fog/rain are being killed by sudden oak death and here. Sudden oak death has killed over one million tanoaks as well as hundreds of thousands of coast live oaks and other trees. In early days of the infestation, Oregon – with considerable help from the US Forest Service – tried to eradicate a small infestation in Curry County. The inherent difficulty in managing a pathogen and interruptions in funding caused that effort to fail. The state is now focused on trying to slow spread of the disease.
  • In California, coast live oaks, black oaks, and canyon oaks in the southern part of the state – primarily in San Diego County, but also parts of San Bernardino, Orange, and Los Angeles counties – are being killed by goldspotted oak borer and here.  At least 100,000 black oaks have been killed in less than 20 years.  Neither the State of California nor USDA APHIS has adopted regulations aimed at preventing spread of the goldspotted oak borer, despite oaks being at risk throughout California.
  • Two more wood-boring beetles threaten oaks in southern California. In five counties in the region, coast live oaks, canyon live oaks, Engelman oaks, and valley oaks – and many other kinds of trees – are being killed by a disease transmitted by the polyphagous and Kuroshio shot hole borers and here.  The polyphagous and Kuroshio shot hole borers attack more than 300 plant species, including tree species that anchor the region’s riparian areas as well as half of the trees planted in urban areas of the region.
  • Also, oaks on the West coast would be attacked by gypsy moths should they reach the area. The risk is two-fold – the Asian gypsy moth continually is carried to the area on ships bearing imports from Asia (as discussed in my blog in March). And the European gypsy moth is sometimes taken across the country on travellers’ vehicles, outdoor furniture, or firewood. Both the West Coast states and USDA search vigilantly for any signs of gypsy moth arrival.

Or course, other non-native pests can also be introduced or spread to new, vulnerable, areas. I have blogged about the risk to the East from sudden-oak-death infested plants moving in the nursery trade (see blogs from July 2015). The polyphagous and Kuroshio shot hole borers might also threaten forests in other warm regions of the country such as the Gulf Coast, where some known and potential host trees grow.

ADDITIONAL THREATS

Two apparent threats have come to our attention recently:  fungi in the genus Diplodia and another disease called foamy bark canker.  There is some uncertainty whether the insects or pathogens are non-native. Both are apparently closely linked to drought stress.

  • two Diplodia fungi – Diplodia corticola and quercivora – have been detected in both Florida and California. These fungi were previously known to kill oaks in the Mediterranean region.

According to Mullerin and Smith (2015), one or both of these fungi might be native to North America. Diplodia corticola was first identified in the 1980’s in cork oaks (Quercus suber L.) in Mediterranean countries.  It has since been determined to be the cause of mortality in other species of European oaksD. corticola was first reported in California in 1998 in coast live oak trees (Q. agrifolia) that had been colonized by bark and ambrosia beetles. There, it has been an important factor in the deaths of thousands of acres of coast and canyon live oaks (Q. chrysolepis) since 2002 (Mullerin and Smith 2015). In California, periodic diebacks since the late 1970s have been associated with droughts.  Symptoms have mainly shown up in coast live oak (Q. agrifolia), black oak (Q. kelloggii), and valley oak (Q. lobata). Dieback is noticeable in at least 20 California counties, throughout most of the range of coast live oak. (See here.)

The first detection of D. corticola in southern Florida was in 2010; D. quercivora was detected in 2013. In Florida, these fungi attack live oaks (Quercus virginiana).  Almost all the symptomatic trees in Florida grow in cultivated settings where they are exposed to various stresses. In addition, most of the state experienced severe drought in 2010, the year reports of dieback began (Mullerin and Smith 2015).

Host range studies indicate that 33 species of oaks and one species of chestnut that grow in the Southeast are vulnerable, to varying degrees, to D. corticola. Oaks in the red oak group (Section Lobatae) are more vulnerable than are white oaks (Section Quercus) (Mullerin and Smith 2015). In the test, the most vulnerable appear to be the following species native to the Southeast: Q. laurifolia, Q. virginiana, Q. geminata, Q. chapmanni, Q. laevis (turkey oak), Q. phellos, Q. pumila, and Q. incana. (source: poster presented by  Dreaden, Black, Mullerin, Smith at the 2016 USDA Invasive Species Research Forum.)

It is unknown how Diplodia corticola & Diplodia quercivora colonize oaks. However, members of the family (Botryosphaeriaceae) generally enter plants through wounds, including leaf scars, or stomata open for gas exchange. They often live harmlessly as endophytes within the plant, becoming pathogenic when the plant is stressed by environmental factors such as drought, flooding, heat, freezing, herbicide use, or soil compaction (Mullerin and Smith 2015).

 

  • Foamy bark canker is new disease of oak species caused by a newly discovered species of species of fungus (Geosmithia pallida). The pathogen is vectored by the Western oak bark beetle (Pseudopityophthorus pubipennis). The disease complex has great potential to cause extensive damage to oaks in California.  Still little is known about the disease’ overall distribution, establishment and incidence.

Declining coast live oak trees have been observed since 2012 throughout urban landscapes in Los Angeles, Orange, Riverside, Santa Barbara, Ventura, and Monterey counties in California. Fungal colonies were observed within beetle galleries (Lynch et al. 2014). The Western oak bark beetle is thought to be a native. It commonly attacks trees weakened by other agents; it has not previously been associated with disease. However, the disease vector might be a different, similar beetle; scientists are collecting more, from a larger geographic area, to determine whether it is the native species or something else.  In Europe, the fungus appears to have be associated with a range of bark-boring insects and is widely distributed. There is no previous published record of the fungus occurring in the United States (Lynch et al. 2014).

Symptoms can be viewed here.

SOURCES

Dreaden, T. A. Black, S. Mullerin, and J. Smith risk to oaks from Diplodia cor+cola and D. quercivora, two emergent fungal pathogens (poster at Annapolis 2016) Includes map showing distribution in Florida.

Drill,S. New pest alert for Foamy Canker Disease on Coast Live Oak. 2014. http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=13707

Lynch, S.C., D.H. Wang,  J.S. Mayorquin, P.F. Rugman-Jones, R. Stouthamer, A. Eskalen. 2014. First Report of Geosmithia pallida Causing Foamy Bark Canker, a New Disease on Coast Live Oak (Quercus agrifolia), in Association with Pseudopityophthorus pubipennis in California. APS Journals Plant DiseaseSeptember 2014, Volume 98, Number 9 Page 1276 http://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-03-14-0273-PDNhttp://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-03-14-0273-PDN

Lynch, S., S. Rooney-Latham, A. Eskalen. [DATE?]  Foamy Bark Canker A New Insect-Disease Complex on Coast Live Oak in California Caused by Western Oak Bark Beetle and Geosmithia sp.

Mullerin, S. & J.A. Smith. 2015. Bot Canker of Oak in FL Caused by Diplodia corticola & D. quercivora. Emergent Pathogens on Oak and Grapevine in North America. FOR318

 

Posted by Faith Campbell

Eradicate ALB – of course! But what about the other pests?

The Asian longhorned beetle (ALB) is the target of most of APHIS’ spending on non-native, tree-killing insects and pathogens. I have been on the record for 18 years – representing a sequence of three organizations – supporting ALB eradication efforts. But other damaging pests do not get adequate attention. Much of the explanation is probably money – APHIS is inadequately funded. But why have the other tree-killers slipped from the attention of politically important constituencies? How do we reverse this situation so that needed actions are taken?

The ALB Eradication Effort

After consulting several sources — Haack 2009, periodic news releases by APHIS and the Ohio Department of Agriculture – I conclude that in the 20 years since ALB was detected in Brooklyn in 1996, US and Canadian authorities have removed at least 188,000 trees. Data on the numbers of high-risk trees treated with systemic pesticides are much less complete. However, it appears from these same sources that U.S. and state authorities have treated more than 800,000 trees. Easily available data do not reveal how many of the treated trees were later found to be infested and therefore had to be cut down. I do hope agency and academic scientists are tracking that information – it is crucial to evaluating the efficacy of programs that allow treatment of “high risk” trees instead of removing them. A related issue is how many trees at early stages of infestation are missed by surveyors.

In carrying out the eradication program over 20 years, APHIS has spent about $600 million (Santos pers. comm.;  US Department of the Interior 2016). Canada has spent far less – something more than $35 million Canadian (Marcotte pers. comm.).

In FY15 APHIS allocated $41.6 million to eradication of the Asian longhorned beetle [US DoI 2016]. This represented 77% of all funds in the agency’s “Tree and Wood Pests” account. The President’s FY17 budget calls for cutting funding for this account from its current level of $54 million to $46 million. If Congress accepts President’s proposed cut and funding for ALB eradication remains at the FY15 level, the proportion allocated to this one pest would rise to 90% of the total account. Perhaps APHIS anticipates spending less on the ALB program. APHIS has announced (USDA news release) that it will  no longer apply systemic pesticides to “high-risk” trees in order to prevent beetle infestation. Instead, the program will focus on identifying and removing infested trees. I worry that with ALB outbreaks still present in Massachusetts, New York, and Ohio, any reduction in the program would be risky. (Official USDA budget documents don’t provide an explicit funding level for the ALB program, so we can’t be sure whether cuts are planned.)

Certainly, ALB eradication deserves continued priority. The beetle kills trees in 15 botanical families – especially maples and birches, which constitute much of the hardwood forest reaching from Maine to Minnesota, as well as urban trees worth an estimated $600 billion. Furthermore, adequately funded eradication efforts have proven to be a successful tactic.

pshb_1PSHB damage to coast live oak;

photo by Akif Eskalen, UCRiverside

Other tree-killing insects are being ignored

However, other species need to be addressed, too. If these efforts are to succeed, they need more than the leftovers from funding ALB work.

Some funds are available through the Farm Bill Section 10007 “Plant Pest and Disease Management and Disaster Prevention Program” grant program. Still …

The Asian gypsy moth demands constant attention from APHIS. That effort is ramping up in response to moth detections in the Pacific Northwest. Apparently most of the funds for this program are from the Farm Bill Section 10007 program – but how long can this funding source be sustained? (See my blog posted earlier in March.)

Efforts to eradicate the spotted lanternfly (Lycorma delicatula) from Pennsylvania continue. The lanternfly attacks 25 or more plant species that grow in the Mid-Atlantic states.  Concern focuses on grapes and fruit trees including apples and stone fruits. (The lanternfly prefers tree of heaven (Ailanthus) (PA DoA) but the insect’s host range is too wide to use it as a biocontrol agent for this widespread invasive plant. The spotted lanternfly entered country as egg masses attached to imported slate. It has been detected in four counties in southeastern Pennsylvania ]

What is – or should be – done about the 20 species of non-native wood-boring and bark insects that have been detected for the first time in the United States over just the past decade? While some appear not to be causing major damage, that impression could be wrong. The polyphagous shot hole borer was first detected in California in 2003 ]. It has taken over 10 years to determine that the PSHB and very similar Kuroshio shot hole borer transport fungi that threaten over 300 plant species, including trees that make up the majority of trees in riparian areas and half of the trees planted in urban areas across southern California.

Tree species in other warm regions of the country such as the Gulf Coast are also at risk if the shot hole borers’ spread is not curtailed. Examples include native boxelder and American sweetgum; as well as such widely planted ornamentals as camellia, mimosa, and Japanese maple. The insects and the Fusarium pathogen that they transport might also attack other species in the oak, maple, sycamore, holly, and willow genera which grow in the Southeast.

Other funding needs

APHIS needs to continue efforts to slow the spread of and reduce impacts on forests from the emerald ash borer, including by continuing to support programs aimed at curtailing movement of firewood. While the emerald ash borer has spread to 25 states, significant areas of natural and urban ash forests remain pest-free, especially in the deep South, Great Plains, and Pacific Coast. APHIS might also continue funding research aimed at improving both biological control and breeding of ash trees resistant to the emerald ash borer.  See my blog about resistance breeding posted in February.

APHIS must also have sufficient resources to respond when additional insect introduction are detected – which seems likely since an estimated 35 shipping containers entering the country each day carry wood packaging infested by damaging pests. [see my blogs about wood packaging posted in July and August 2015 and the SWPM fact sheets.

And – as the AGM and spotted lanternfly examples demonstrate – the risk of introduction of tree-killing insects goes far beyond imports of “agricultural” commodities – even when those commodities are widely interpreted to include wooden crates and pallets.

Please re-visit my blogs of 22 February to learn the details of funding issues and then contact your Representative and Senators to support increased funding for APHIS.

 

Posted by Faith Campbell

 

SOURCES

Haack, R.A., F. Herard, J. Sun, J.J. Turgeon. 2009. Managing Invasive Populations of Asian Longhorned Beetle and Citrus Longhorned Beetle: A Worldwide Perspective. Annu. Rev. Entomol. 2010. 55:521-46.

Marcotte, M. Canadian Food Inspection Agency. Email to F.T. Campbell 29 April, 2013.

Pennsylvania Department of Agriculture: Agriculture Secretary Urges Consumers to Help Keep Foreign Insect from Spreading through Pennsylvania, United States ​News for Immediate Release Nov. 3, 2014

Santos, R. USDA Animal and Plant Health Inspection Service. Email to F.T. Campbell, April 12, 2013.

USDA APHIS NEWS RELEASE   3/28/16

Contact: Rhonda Santos, (508) 852-8044, rhonda.j.santos@aphis.usda.gov

Suzanne Bond, (301) 851-4070, suzanne.m.bond@aphis.usda.gov

U.S. Department of the Interior. 2016. Safeguarding America’s lands and waters from invasive species: A national framework for early detection and rapid response, Washington D.C., 55p.

 

Asian gypsy moth – the risk is still too high

The Asian gypsy moth would be more damaging than the European gypsy moth because it feeds on a wider range of plants – including conifers – and the female flies – speeding up its spread.

lymdi18Asian gypsy moth; John H. Ghent; bugwood.org

The United States and Canada have a joint program – under the auspices of the North American Plant Protection Organization (see RSPM #33 here) aimed at preventing introduction of species of gypsy moths native to Asia. The principal risk arises from moths attaching their egg masses to ships (and containers on deck) when the ships visit ports in Far Eastern Russia, China, Korea, and Japan.  The NAPPO standard originally went into force in March 2012.  Under its terms, ships leaving ports in those countries during gypsy moth flight season must be inspected and cleaned before starting their voyage.

 

Gypsy moth populations rise and fall periodically; thus, it is much more likely that egg masses will be attached to ships during years of high moth population densities.

 

These variations are seen in U.S. and Canadian detection reports.

AGM Interceptions by year

United States                            Canada

2010                 4

2011                21

2012                44                                32

2013                42                                33

2014                76                                39

2015                  7                                15

 

(U.S. data from Kevin Harriger, Bureau of Customs and Border Protection, at the 2015 meeting of the Continental Dialogue on Non-Native Forest Insects and Diseases [http://continentalforestdialogue.org/continental-dialogue-meeting-november-2015/] ; Canadian data from Wendy Asbil, National Manager, Invasive Alien Species and Domestic Plant Health Programs Section, Plant Health and Biosecurity Directorate, Canadian Food Inspection Agency

 

While most AGM detections are at West Coast ports, the risk is not limited to that region. In 2013, Asian gypsy moths were detected at Baltimore, MD; Charleston, SC; Savanna and Brunswick, GA; Jacksonville, FL; New Orleans, LA; Houston and Corpus Christi, TX; and McAlester, OK.

Well aware of the risk associated with ships, U.S. and Canadian customs officials are vigilant in conducting inspections; if egg masses are found, the ships are required to return to international waters and clean off the egg masses.  The ships are inspected again before they are allowed back into port.  The process delays deliveries that are often on tight schedules and costs hundreds of thousands of dollars.

However, the risk is not limited to the ships themselves.  In 2014, more than 500 Asian gypsy moth egg masses were found on four shipments of imported steel slabs arriving at ports on the Columbia River. Efforts were made to clean the more than 5,000 steel slabs, but some egg masses were still present after the cleaning.  The steel was then sent to a furnace for final processing; the furnace heated the steel to  more than 2,000oF – sufficient to kill any remaining eggs! Still … (report by APHIS: Asian Gypsy Moth interceptions and mitigation of risk at Columbia River Ports of Entry, 2014. 18 February 2015)

 

Some question whether a global company with annual earnings close to $2 billion can be persuaded to take the necessary steps to ensure that its imports are free of gypsy moth eggs.  The cleanup costs charged  by APHIS would be minimal.

 

Besides, cleaning large steel plates is apparently difficult and probably requires fumigation with methyl bromide – which must be administered in a closed facility with appropriate safety measures.

Implementing the NAPPO standard that presents a unified front to Asian exporters – they must clean ships headed to North America – clearly has reduced the risk of introduction of Asian gypsy moths.  But the smaller risk remains.  Indeed, Oregon and Washington occasionally catch small numbers of Asian gypsy moths in their traps.  In 2015, ten Asian gypsy moths were trapped in Washington State (Report of the Technical Working Group for the Response to Asian Gypsy Moth Captures Washington-Oregon  2015 October 30, 2015).

Oregon caught two Asian gypsy moths in the Portland area (15,000 traps had been placed statewide; the state also trapped 12 European gypsy moths). Previous detections of Asian gypsy moth in Oregon were one each in 1991, 2000, and 2006. Two of these moths were trapped near the location of the 2015 detections.  A vessel that called at Tacoma in January 2013 had 275 egg masses.

The Asian gypsy moths were caught in traps across a broad area, including eight captures around  southern Puget Sound and three in the Portland, OR/Vancouver, WA area.  For these and other reasons, experts concluded that it is likely that females moths are also present in one or more of these areas (Report of the Technical Working Group for the Response to Asian Gypsy Moth Captures Washington-Oregon  2015 October 30, 2015).

The expert group recommended enhanced trapping plus eradication at the four sites where captures were clustered. The group discussed the pros and cons of various approaches, including spraying with Btk, Diflubenzuron (“Dimilin”), or Tebufenozide (“Mimic”); or with Gypchek (gypsy moth nuclear polyhedrosis virus); and  augmentation of spray programs by releasing sterile males.

Both Washington and Oregon plan gypsy moth eradication measures in 2016.  Washington plans to treat 10,500 acres at seven locations in Pierce and Thurston counties (both at the southern end of Puget Sound).   Oregon will spray in several places in northern and northwest Portland.

 

Posted by Faith Campbell

 

 

Emerald ash borer – crucial research needs funding!

ash tree dying after attack by emerald ash borer
ash tree dying after attack by emerald ash borer

We all know that the emerald ash borer (EAB) has caused enormous damage in the approximately 25 years since it was first introduced to Michigan and Ontario. (For more information, see writeup here. In brief, EAB has killed “untold millions” of ash trees across more than 170,000 square miles in 25 states and two provinces (map).
Apparently all North American ash are vulnerable – more than 20 species in Canada, the U.S., and Mexico. The genus Fraxinus is one of the most widespread on the continent. These trees’ deaths are causing changes in forest species composition, structure, and function. Hundreds of arthropod species that depend on the genus will be affected.

Nevertheless, forests with important ash components are still outside the infested area and deserve greater protection.

20160222_Campbell

Also, ash trees are among the most common ornamental trees planted in U.S. cities and towns. The death of these trees show us that EAB also has imposed billions of dollars in costs on people who had no direct role in the insect’s introduction and spread. Several studies have proposed estimates:
o Communities in Ohio would likely incur costs up to $4 billion if all ash trees on public land were removed and replaced (Sydnor et al. 2007).
o Communities in four Midwestern states would have to pay an estimated $26 billion to remove and replace as trees growing in parks, private lands, and along streets (Sydnor et al. 2011).
o The cost of treating or removing only half of the affected urban and suburban trees across the anticipated range of EAB during the 10-year period from 2009 to 2019 would be $20 billion (Kovacs et al. 2011).

ash tree killed by EAB; Ann Arbor, MI; courtesy of Major Hefje
ash tree killed by EAB; Ann Arbor, MI; courtesy of Major Hefje

Over the 14 years since EAB was detected, scientists have learned much about the insect, its hosts, and its management. Early detection of new outbreaks remains difficult. However, traps and lures are more effective than even a few years ago. Other new tools also have been deployed, including strategies for protecting high value trees, and slowing the rate of ash mortality in urban and natural forests.

Four biocontrol agents have been released at sites across the invaded area, although it is too early to know how effective they will be in suppressing EAB populations and protecting ash trees.

The systemic insecticide emamectin benzoate controls EAB for up to three years. This means that municipalities and property owners can now save mature ash trees. Studies show that treating such trees costs less than removing dead trees and planting replacements (Herms and McCullough 2014).

Scientists in Ohio, Michigan, Kentucky, and Massachusetts are testing whether treating just some trees in forest settings can help protect nearby ashes.

One of the most important potential responses to this insect is to breed resistant ash trees. The USDA Forest Service and USDA APHIS have funded such efforts since 2005 – only three years after the insect was detected. Scientists have demonstrated that some ash species that have coevolved with the insect in Asia – especially Manchurian ash – are resistant to EAB attack. More recently, they have been studying how to cross-breed the resistant and non-resistant species and how to evaluate the hybrid progeny for genetic resistance.

Dr. Pierluigi (Enrico) Bonello and others at Ohio State and Wright State University  are studying how Manchurian ash trees resist EAB attack. Their focus is on the chemicals present in the trees’ tissues – how they differ in Manchurian ash compared to North American species. These studies have found that Manchurian ash trees contain chemicals that decrease growth and survival of EAB larvae, and decrease the attractiveness of the tree to ovipositing females.
The Ohio team next needs to continue their progress towards identification of the specific chemicals involved, insert the genes that produce them into other ash tree genomes, and produce a large enough number of progeny to test whether the new trees’ genes provide the expected protection.

The team is also studying the other side of this equation – how EAB larvae neutralize defense mechanisms of vulnerable ash species and how these trees may be manipulated to interfere with these adaptations of EAB.. This is a long-term project that needs consistent and sustained support over many years to bring about real capacity for restoring disappearing ash populations.

Unfortunately, funding for this vitally important work is not assured. USDA APHIS (link to 101 on CISP) has funded the team’s work to date, but may no longer be in a position to do so. . After all, it is 14 years since EAB was detected and a decade since APHIS stopped trying to eradicate it. The goal now is to manage EAB in the forest and in urban settings, over the long term. This task logically should fall to the USDA Forest Service.

Both APHIS and the Forest Service are challenged by the need to respond to the introduction of ever more non-native tree-killing insects and diseases; by the need for programs to address pests already present; and by simultaneous reductions in agencies’ budgets. APHIS’ budget for managing all “tree and wood pests” has fallen from $76 million to $55 million since 2011 – a 28% reduction. The USFS’ research budget has fallen less, proportionately: from $307 million to $292 million (a 4% cut).
However, the USFS Research budget has never been generous in funding research on non-native invasive species. Annual totals for invasive species research have been between $5 and $5.6 million since 2012. EAB specifically has been funded at between $1.2 and $1.8 million.
(For a longer discussion of funding shortfalls and other impediments to programs intended to help our forests recover from EAB and other non-native pests, read Chapter 6 of Fading Forests III, available here)

The emerald ash borer is the most destructive and costly forest insect ever introduced to the United States. Surely the government agency responsible for protecting our forests should provide additional resources to counter this threat.

Sources:
Herms, D. A. and D. G. McCullough. 2014. Emerald Ash Borer invasion of North America: History, biology, ecology, impacts, and management. Annual Review of Entomology, Vol 59, 2014 59:13-30.

Kovacs KF, Mercader RJ,Haight RG, SiegertNW,McCulloughDG,Liebhold AM. 2011. The influence
of satellite populations of emerald ash borer on projected economic costs in U.S. communities, 2010–
2020. J. Environ. Manag. 92:2170–81

Sydnor TD, Bumgardner M, Subburayalu S. 2011. Community ash densities and economic impact
potential of emerald ash borer (Agrilus planipennis) in four Midwestern states. Arboric. Urban For. 37:84–89

Sydnor TD, Bumgardner M, Todd A. 2007. The potential economic impacts of emerald ash borer
(Agrilus planipennis) on Ohio, U.S., communities. Arbor. Urban For. 33:48–54
Posted by Faith Campbell

Support Higher Funding Levels for Key APHIS & USFS Programs

The President’s proposed Fiscal Year (FY)17 budget once again proposes to reduce funding for APHIS and USDA Forest Service. These are the programs that protect our trees and forests; these are the programs that try to prevent introductions of tree-killing insects and disease pathogens, and to counter the damage they cause once introduced.

 

Capitol
Congress is expected to act beginning this spring; we need Congress to enact adequate funding for these programs in FY17 – which begins in October.

I provide below the FY15 & FY16 funding levels and the President’s proposed FY17 level. I also suggest more appropriate funding levels for these programs.
Please contact your Representative and Senators by mid-March and ask him or her to support higher funding for these crucial programs. Your voice is particularly important if your Representative or Senator sits on either the Agriculture or Interior Appropriations subcommittees (listed below).
Fiscal Year Funding for Key Programs (funds are given in millions of dollars)

APHIS (I apologize – columns don’t line up!)
FY15       FY16       FY17 (Pres’ request)             $needed

Plant Health (total)       305         314           288
Specialty crops               156        164           146            164
Tree & wood pests           54          54              46               54

The “Tree & wood pests” account funds all APHIS efforts to contain or eradicate the Asian longhorned beetle and emerald ash borer; much smaller programs targeting walnut twig beetle/thousand cankers disease, laurel wilt, and polyphagous shot hole borer [all described here as well as the agency’s involvement in firewood and other slow-the-spread campaign. Even at the $54 million funding level, APHIS is already ignoring many established pests … and its ability to respond to new introductions is severely restricted. With the continuing presence of damaging wood-borers in incoming crates and pallets (See earlier blogs discussing the wood packaging pathway posted in August, September, and October; and Chapter IV of Fading Forests III, now is not the time to cut funding for this program.

The “specialty crops” account includes a small amount of funding (in past years, approximately $5 million) to support APHIS’ program aimed at preventing spread of sudden oak death through movement of nursery stock. (For discussions of this risk see my earlier blogs from July and August and Chapter IV of Fading Forests III.

The budget justification notes that “cooperators who directly benefit from … activities [under the Tree and Wood Pests and Specialty Crop Pests programs] will need to increase contributions to achieve the same level of program operations. Even with the proposed decreases, APHIS will continue to pay between 47 percent and 80 percent of the costs of the programs. …” The Office of Management and Budget has long tried to reduce the federal share of pest containment costs.  I counter: is it not appropriate that the agency with the legal responsibility for preventing and containing pest introductions bear the cost of responding when pests are introduced nevertheless?

Fiscal Year Funding for Key Programs (funds are given in millions of dollars)

USFS  (I apologize – columns don’t line up!)
FY15        FY16        FY17 Pres’ request        needed
Forest Health Protection (total)

104.57         99.6             92.06           100?
Federal lands    58.922        58.922       51.382
Coop lands         45.655        40.678       40.678         48
FHP funds the Forest Service’ assistance to federal partners (e.g., National Park Service) and non-federal entities (e.g., states, cities, private land managers) for management of forest pests – both native and alien species. The FY17 budget justification does not provide a breakdown of spending by species. The FY16 President’s request allocated only $12 million (13% of total funds) to specific projects targeting non-native insects or pathogens. More than $7 million of these funds went to just one species – European gypsy moth. Please advocate for a higher proportion to go to non-native pests.

Research (total)                              296       291        291.982            300?
Forest Inventory                              70          75                   77               83

The USFS Research and Development program provides most of the funds for research to understand non-native pests’ pathways of introduction and spread and biological impacts. These funds also support most of the efforts to breed resistance into tree species and some of the work on other control methods, such as chemicals and biocontrol. The FY17 budget justification does not provide a breakdown of spending by species; the FY16 President’s request allocated only $5 M (less than 2% of total funds) to projects targeting non-native insects or pathogens. Please advocate for a higher proportion to go to non-native pests.

Members of key House & Senate Appropriations Subcommittees
Agriculture Appropriations Subcommittees (fund APHIS):
House: Aderholt (AL), Yoder (KS), Rooney (FL), Valadao (CA), Harris (MD), Young (IA); Farr (CA), DeLauro (CT), Bishop (GA), Pingree (ME)
Senate: Moran (KS), Blunt (MO), Cochran (MS), McConnell (KY), Collins (ME), Hoeven (ND), Daines (MT), Merkley (OR), Feinstein (CA), Tester (MT), Udall (NM), Leahy (VT), Baldwin (WI)

Interior Appropriations Subcommittees (fund USFS):
House: Calvert (CA), Simpson (ID), Cole (OK), Joyce (OH), Stewart (UT), Amodei (NV), Jenkins (WV); McCollum (MN), Pingree (MD), Kilmer (WA), Israel (NY)
Senate: Murkowski (AK), Alexander (TN), Cochran (MS), Blunt (MO), Hoeven (ND), McConnell (KY), Daines (MT), Cassidy (LA); Udall (NM), Feinstein (CA), Leahy (VT), Reed, Tester (MT), Merkley (OR)

Posted by Faith Campbell

How should regulators address strains of pathogens?

Species of tree-killing pathogens can have several “strains” that may vary in virulence or hosts affected.

`ohi`a`ohi`a tree on Hawai`i

This is a phenomenon well known to pathologists, but regulators have not adapted their programs to address it. Once a pathogenic species is determined to be established in the country, APHIS considers the entire species to be “non- actionable” and will not attempt to prevent introduction of any new strains. As the examples below illustrate, allowing introduction and spread of new strains poses risks to North America’s trees.

World-renowned British forest pathologist Clive Brasier has spoken out often on the risk posed by various strains of a pathogen. He has also written about the potential for pathogen species to hybridize and for that hybrid to threaten new hosts.

How widespread a problem is this? Some of the pathogens causing the greatest damage have several strains that vary in their virulence and host range.

  •  The sudden oak death pathogen, Phytophthora ramorum is known to have four strains: NA1, NA2, EU1 and EU2. The EU1 lineage has primarily been found in European nurseries and forests. It has also been recovered from several nurseries and waterways on the U.S. west coast. Last year, the EU1 lineage was detected in a forest in Oregon (see my blog posted 15August 2015). This is troubling for two reasons:
    * the EU1 lineage is more aggressive than the NA1 lineage already present in the forests of California and Oregon. Some of the individual tree which now appear to be resistant to the NA1 lineage might succumb to the EU1 lineage.
    * The EU1 and NA1 lineages belong to opposite mating types, so they can potentially reproduce, thereby increasing the genetic variability of the pathogen. (Sexual reproduction in P. ramorum can only occur when opposite mating types meet; in the absence of opposite mating types, all reproduction is clonal.)

• The guava rust or myrtle rust pathogen, Puccinia psidii, also has several strains which vary in their virulence. Already, a new strain introduced to Jamaica in the 1930s caused extensive damage to the allspice industry – although a different strain had been on the island for decades (Carnegie 2016).

Hawaiian conservationists worry that a more virulent strain of P. psidii might be introduced and threaten additional species of Myrtaceae on the Islands – especially the `ohi`a tree which is the major canopy tree in 80% of the Islands’ remaining native forest. These forests are key to maintaining the Islands’ watersheds and biodiversity, especially because `ohi`a nectar is the principal food source for many of the remaining native and rare bird species. (See writeup here)

Multiple strains of `ohi`a rust have been identified in the pathogen’s native range of Brazil. Using funds from the USDA Forest Service, scientists in Brazil (Costa da Silva et al. 2014) tested five of the strains; three proved to be highly virulent on most `ohi`a seedlings tested. `Ohi`a from several locations were tested; none showed significant resistance to these three strains of the P. psidii pathogen.

The tests were carried out under conditions highly conducive to infection, so the results cannot be used to predict epidemiological behavior and ecological ramifications in natural conditions. Nevertheless, the results do support the need for greater efforts to prevent introduction of new strains to the Islands.

Additional tests are under way to determine whether the Brazilian strains are more virulent than that strain currently found in Hawai`i and to learn more about possible variation in vulnerability among `ohi`a trees from a greater variety of sites.
• The pathogen that causes Port-Orford cedar root disease (Phytophthora lateralis) has now been found to have four lineages. Scientists compared isolates from the pathogen’s putative native range on Taiwan to isolates from the North American west coast (where it has been established since early in the 20th Century) and Europe (where it began killing trees in the 1990s). They found one slow- growing strain from Taiwan, one fast-growing strain from North America and Europe, and one of intermediate growth from a small area of the United Kingdom (Brasier et al. 2012).

Sometimes, pathogens behaving in unexpected ways are initially thought to be a strain or lineage, but are later classified as a novel species. Thus the Ceratocystis causing `ohi`a wilt was initially thought to be a strain of C. fimbricata, a widespread fungus that has been on the Hawaiian Islands for decades. Scientists now think it is a new species (Keith 2016).

Pathogens are difficult to manage. The vast majority of species remain undescribed. They are difficult to detect until they cause noticeable damage. For a longer discussion of the challenges posed by pathogens and other unknown organisms, read Chapter 3 of Fading Forests II, available here.

However, the great threat to our forests necessitates that APHIS and other phytosanitary agencies (in states and around the world) develop improved methods for addressing the challenge that pathogens pose. Our forests simply cannot afford introductions of more tree-killing fungi, oomycetes, and other pathogens.

At a minimum, APHIS should respond to evidence that a particular pathogen is composed of multiple strains with varying virulence by agreeing to designate such novel strains as “actionable” and applying all its authorities and powers to prevent introduction and spread of the novel strains.

As I noted in my blog of earlier this month, APHIS also needs to develop more effective strategies for addressing introduction and spread of pathogens generally. USDA should assist such efforts to improve controls over pathogens by bringing about prompt finalization of two APHIS initiatives:
1) Prohibiting temporarily plants suspected of transporting known damaging pathogens. This action is allowed under the NAPPRA (not authorized for importation pending pest risk assessment) program.
2) Requiring foreign suppliers of living plant imports to implement “hazard analysis and critical control point” programs to ensure that the plants are pest-free during production and transport. This approach is allowed under ISPM#36 and would be authorized under pending changes to APHIS’ “Q-37” regulation. (See Federal Register Vol. 78, No. 80 April 25, 2013.)

(See longer discussions of these programs in Fading Forests III, available here.)
Sources

Clive M. Brasier, C.M, S. Franceschini, A.M. Vettraino, E.M. Hansen, S. Green, C. Robin, J.F. Webber, and A.Vannini. 2012. Four phenotypically and phylogenetically distinct lineages in Phytophthora lateralisFungal Biology. Volume 116, Issue 12, December 2012, Pages 1232–1249

Carnegie, A.J., A. Kathuria, G.S. Pegg, P. Entwistle, M. Nagel, F.R. Giblin. 2016. Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol Invasions (2016) 18:127–144 DOI 10.1007/s10530-015-0996-y

Costa da Silva, A., Magno Teixeira de Andrade, P. Couto Alfenas, A., Neves Graca, R., Cannon, P., Hauff, R., Cristiano Ferreira, D., and Mori, S. 2014. Virulence and Impact of Brazilian Strains of Puccinia psidii on Hawaiian `Ohi`a (Metrosideros polymorpha). Pacific Science (2014), vol. 68, no. 1:7-56
Keith, L. 2016. Ceratocystis fimbriata, Rapid O’hi’a Death: Unraveling the mystery. 27th USDA Interagency Research Forum on Invasive Species January 12-15, 2016 Annapolis, Maryland

 

Posted by Faith Campbell

How should APHIS manage pathogens with Multiple Hosts?

large redbay tree on Jekyll Island, Georgia; afterwards killed by laurel wilt

Horton House w redbay

 

North America and other continents have been invaded by a growing number of tree-killing organisms – primarily pathogens – that attack a wide range of hosts100 species or more. Examples include sudden oak death / Phytopthora ramorum**, laurel wilt**, and the Fusarium fungus transported by the polyphagous and Kushiro borers**. These pathogens are more difficult to manage because of the range of potential hosts. Furthermore, a single introduced species can threaten numerous host species across large areas.
This is not a new phenomenon. Root rot caused by Phytophthora cinnamomi reached North America in the late 18th or early 19th Century, where it eliminated chestnut and chinkapin from low-elevation sites. P. cinnamomi is found in countries around the world. In Australia, it is killing a wide range of trees and shrubs across several plant families that constitute important components of Australia’s flora, including Myrtaceae, Proteaceae, Epacridaceae and Papilionaceae. There have been significant ecological impacts to plant communities and dependent wildlife in southeast and southwest Australia (Carnegie et al. 2016).

Nevertheless, the apparent proliferation of tree-killing organisms with multiple vulnerable hosts is troubling. So is the rapidity with which these organisms have been spread to distant places.

The disease called variously guava, eucalyptus, or myrtle rust – caused by Puccinia psidii** – attacks plants in “only” one family – the Myrtaceae. Its host list now includes more than 450 species in 73 genera. More than 200 of these are native species in Australia – where more than 10% of the plant species are members of this family. At least some of these plants are highly vulnerable to the rust; more than half of the individuals of the small tree Rhodomyrtus psidioides surveyed in a recent study were dead less than four years after the pathogen was introduced (Carnegie et al. 2016). New Zealand also has large numbers of Myrtaceae.

Guava rust is believed to be native to South and Central America. It was introduced to the Caribbean and southern Florida by the first decades of the 20th Century. Recently, the pathogen began to move. A new strain arrived in Florida in the 1990s. The rust was detected in Hawai`i in 2005. There, it is killing the native endangered shrub Eugenia koolauensis and an invasive shrub Syzygium jambos. In the past decade, guava rust has also invaded Japan, China, Australia, South Africa and New Caledonia (Carnegie et al. 2016).

Laurel wilt** also attacks “only” one plant family, the Lauraceae. While the United States is home to a relatively small number of plants in this family, Central America is a center of endemism for the family. In the United States, concern has focused on the disease’s threat to the avocado industry. However, the pathogen’s principal wild host, redbay, is likely to be virtually eliminated from U.S. forests except as seedlings too small to be attacked. (One ray of hope: Professor Jason Smith at the University of Florida is making progress on breeding redbays resistant to the disease.) Given the large number of presumably vulnerable trees and shrubs in Mexico and Central America, the spread of laurel wilt into Texas is worrisome.

Other pathogens attack shrubs and trees across several families. I noted Phyotphthora cinnamomi above. Other Phytophthoras share this ability.

Phytophthora ramorum** has a host list exceeding 130 herbaceous, shrub, and tree species in families ranging from maples to rhododendrons, oaks to hemlocks. P. ramorum is established in coastal parts of California and southern Oregon; and in western United Kingdom and Ireland. Another Phytophthora, P. kernoviae,** has a similarly broad host range. It is also established in the United Kingdom.

Fusarium dieback is caused by the fungus Fusarium euwallacea, which is transported by two beetles in the Euwallacea genus, called the polyphagous** and Kushiro shot hole borers. The beetle is known to attack more than 300 species of trees, shrubs, and vines in more than 58 plant families; hosts include species of oaks, maples, sycamores, hollies, and willows.

These multi-host pathogens are extremely difficult to contain – or even to detect early in the invasion. Australia tried to contain Puccinia rust, but conceded failure after only a few months. USDA APHIS does not have containment programs for any of three pathogens described here – despite the danger they pose to trees and other native vegetation.

Industry groups sometimes fund efforts to protect their crops. Avocado growers have spurred research on both laurel wilt and the Fusarium fungus — threats to their crop. However, academic researchers working on the impacts of laurel wilt on native ecosystems must scramble for funds. This is exactly the kind of research that requires – and deserves – increased public funding.

What should be done? Phytosanitary agencies need to improve greatly programs aimed at preventing introduction of pathogens to naïve hosts in new geographies. For the U.S., APHIS has already advocated two important improvements:
1) Prohibiting temporarily plants suspected of transporting known damaging pathogens. This action is allowed under the NAPPRA (not authorized for importation pending pest risk assessment) program.
2) Requiring foreign suppliers of living plant imports to implement “hazard analysis and critical control point” programs to ensure that the plants are pest-free during production and transport. This approach is allowed under ISPM#36 and would be authorized under pending changes to APHIS’ “Q-37” regulation. [See Federal Register Vol. 78, No. 80 April 25, 2013]

(See longer discussions of these programs in Fading Forests III, available here.)

Unfortunately, implementation of both of these programs has stalled. A list of plants proposed in May 2013 for NAPPRA restrictions has still not been finalized. Revisions to the Q-37 regulation proposed in April 2013 have also not been finalized.

USDA leadership should promptly implement these long-delayed improvements.
** indicates those pathogens and insect/pathogen complexes that are described briefly here 

Source

Carnegie, A.J., A. Kathuria, G.S. Pegg, P. Entwistle, M. Nagel, F.R. Giblin. 2016. Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol Invasions (2016) 18:127–144 DOI 10.1007/s10530-015-0996-y

Posted by Faith Campbell

Help promote new film about tree-killing pests!

A new film demonstrating the impact of non-native tree-killing insects and diseases will be shown on or around Arbor Day (April 20). You can help ensure that lots of people see the film!!! Contact the program manager at your local PBS channel to ask that the channel broadcast the film.

ash tree killed by EAB; Ann Arbor, MI; courtesy of Major Hefje
ash tree killed by EAB; Ann Arbor, MI; courtesy of Major Hefje

“Trees in Trouble: Saving America’s Urban Forests” focuses on emerald ash borer in Cincinnati. The film explores our connections to the trees and forests in our communities – and the threats to those trees. The film’s website links viewers to resources for taking action.

To see clips from the film and other resources go to this site.

The film was produced by Torrice Media. Featured experts and speakers include Prof. Dan Herms of Ohio State, Jenny Gulcik, a community forestry consultant, and Cincinnati Council member Wendell Young.
As we all know, killer pests threaten trees across the country, not just in southern Ohio! Such pests are usually introduced first in cities – not necessarily ports! – because that is where crates and pallets, imported ornamental plants, and other articles to which pests attach arrive. Furthermore, trees along streets and in yards and parks are often more vulnerable than forest trees to such introduced pests because they are often subject to other stresses such as soil compaction, air pollution, elevated temperatures, and salt exposure. Finally, city trees are often planted as multiple individuals of the same species; when a pest that attacks that species arrives, entire neighborhoods can lose their tree canopy – and the real values that canopy provides.
Because of the high value of urban trees, these pests’ greatest economic damage is in urban and suburban areas. The study by Julianne Aukema and others documented that municipalities spend more than $2 billion annually to remove trees killed by non-native pests. Homeowners spend $1 billion a year removing trees killed by non-native pests, and another $1.5 billion is lost in property values due to tree mortality.

Thus, it is vitally important that American city dwellers learn about the values that trees provide to them, the threat to those values from introduced pests, and what they can do to minimize this threat. “Trees in Trouble” is a tool to advance citizens’ understanding of these issues through a combination of broadcasts, compelling video presentations and active civic engagement efforts linked to the film.

goldspotted oak borer
goldspotted oak borer

Some people – less familiar with the issue than we are – do not immediately understand the relevance of Cincinnati’s story to other cities. We know that while the trees and killers differ across the country, the cost to the communities is the same: destruction of trees that provide shade and other important ecosystem services and create our sense of home. Plus, the ways these pests are introduced are the same – and so are the steps we can take to reduce this threat.

[The goldspotted oak borer illustrates the universality of this threat – trees in southern California are being killed, too!]
You can help overcome this roadblock!
If you would like to help promote the film to your local PBS station or to local viewers, contact Andrea Torrice at 513-751-7050 or here

If you would like to obtain a copy of the film to screen to your group, contact Andrea Torrice at the same phone number or website. (Andrea is Italian; her name is pronounced “to re chay”, with the accent on “re”.)
Source:
Aukema, J. E., B. Leung, K. Kovacs, C. Chivers, K. O. Britton, J. Englin, S. J. Frankel, R. G. Haight, T. P. Holmes, A. M. Liebhold, D. G. McCullough, and B. Von Holle. 2011. Economic Impacts of Non-Native Forest Insects in the Continental United States. Plos One 6.

Posted by Faith Campbell

Fed up by lack of action on invasive species? Let’s pressure the right targets!

CapitolOn December 1, the House Oversight Committee, Subcommittee on Interior, held a hearing on invasive species. This hearing was apparently held at the request of the ranking Democrat, Brenda Lawrence of Michigan. Ms Lawrence is most concerned about aquatic invaders in the Great Lakes. Chairwoman Cynthia Lummis is from Wyoming, so her focus is on invasive plants on western rangelands.
Chair Lummis opened the hearing, but left promptly. Other subcommittee members who were present for varying lengths of time were Paul Gosar (R-AZ), Ken Buck (R-CO), Gary Palmer (R-AL), Brenda Lawrence (D-MI), and Stacey Plasket (D-USVI) ; from full committee: Will Hurd (R-TX).

The witnesses were the newly appointed executive director of the National Invasive Species Council (NISC), Jamie Reaser; the president of the Reduce Risk from Invasive Species Coalition (RRISC), Scott Cameron; Dr. George Beck of Colorado State University, representing the Healthy Habitats Coalition (HHC); and Dr. Alan Steinman, expert on aquatic invaders from Grand Valley State University in Michigan.
This hearing followed those in past years that had been stimulated by the HHC. Both HHC and Congressional members expressed great frustration that the federal government is not putting sufficient effort into stopping or reversing the spread of invasive plants on western rangelands.
The December hearing – like its predecessors – focused the criticism on NISC. I think this focus is misguided. NISC has no independent authority or power; it was created to coordinate agencies’ actions, not to substitute for them. Its staff lack sufficient rank to tell agencies what to do.
In § 4 of Executive Order 13112, NISC’s duties are listed as providing national leadership through (a) overseeing implementation of this order, seeing that Federal agencies’ activities are coordinated, complementary, cost-efficient, and effective, …; (b) encouraging planning and action at local, tribal, State, regional, and ecosystem-based levels …; (c) developing recommendations for international cooperation …; (d) developing, in consultation with the Council on Environmental Quality, guidance to Federal agencies pursuant to the National Environmental Policy Act (NEPA)…; (e) facilitating development of a coordinated network among Federal agencies to document, evaluate, and monitor IAS impacts …; (f) facilitating establishment of an … information-sharing system …; and (g) preparing a national Invasive Species Management Plan every two years.
NISC has fallen far short of these requirements. It has not succeeded in developing guidance on NEPA – at least in part because CEQ has not cooperated. Most glaringly, NISC has issued only two Management Plans over 15 years — the most recent in 2009. All Members at the hearing complained to Reaser about this failure. Members see the Plan as key to setting priorities and ensuring that funds are well-spent.

All Members seemed to think that NISC actually should carry out on-the-ground activities and direct agencies’ priorities. Some want NISC to overcome federal agencies’ alleged foot-dragging in helping local groups eager to attack local problems, or to pressure Native American tribes to cooperate.

While I share the critics’ frustration about federal agencies’ inaction, I believe the productive approach is to apply pressure on – and where deserved, support for – those who have the authority and power to act, but who often choose not to. VilsackThese are:
• heads of agencies and departments, especially the secretaries of Agriculture and Interior and their Under and Assistant secretaries;
• the President;
• budget staffs of these and other relevant agencies;
• the Office of Management and Budget;
• Members of the Congressional appropriations committees.

If these people think that dealing with invasive species is politically important, they will do so. If they don’t hear from their constituents about invasive species, they will focus on other issues.

At the hearing, Scott Cameron, of RRISC, said that what is missing is commitment at the Assistant/Under Secretary Level. Such a commitment would both drive coordination among agencies at headquarters and provide “cover” for regional staff trying to work together. He feels that a new Management Plan is useful but not sufficient. Scott made several recommendations intended to raise the political visibility of invasive species issues:
1) NISC submit annual work plan to Congress – he thought this would get political level attention in the departments;
2) NISC serve as forum to coordinate with regional governors’ associations;
3) NISC create national network of regional early detection/rapid response efforts;
4) NISC serve as forum for regional officials of land-managing agencies to coordinate and work together – this might succeed in getting attention of agency leadership and OMB;
5) NISC ensure coordination of priorities and approaches by member agencies at headquarters level; and
6) NISC evaluate best practices by other governments, propose their adoption by the United States.

Dr. Beck, of HHC, reiterated his constituency’s complaint that there has been little progress on invasive species problems despite three decades of effort. He blamed the lack of leadership by NISC – without saying how staff can “lead” the political appointees who head agencies! He called – again – for abolition of NISC and transfer of its $1 million budget to “on the ground” programs. Beck also decried inconsistencies in agencies’ budgets, lack of collaboration with states and local groups in setting priorities, and NEPA having become an excuse to avoid taking action.

HHC has promoted introduction of bills in both the House and Senate – H.R 1485 & S. 2240 – which would require:
• strategic planning;
• cooperation with states;
• categorical exclusion from NEPA review for efforts to protect high-priority sites;
• 5% annual reduction in weed species’ extent; and
• allocation of agencies’ invasive species funds according to the following formula: 75% for on-the-ground activity; 15% for combined research and outreach; 10% or less for administrative costs.

Of these recommendations, I think the proposed dropping of environment reviews of invasive species management programs – especially in “high priority” sites of high ecosystem values – would be a disaster. Management programs have environmental impacts, too; and some approaches cause more harm than good. For example, use of herbicides to eliminate knapweeds has sometimes resulted in takeover of the site by non-native annual grasses that are even more difficult to control.

EAB profile reverse

Also, I think the proposed funding allocation is very unwise. Research and outreach often contribute enormously to control or containment of invasive species. I have been unable to get straight answers from the USDA Forest Service about how such an allocation would affect their programs – which are divided among three separate entities – Research, State and Private Forestry, and National Forest System.

HHC is very active in promoting its position – and those of us who think differently are not yet being heard in Congress.

I think there is room to work with members of the House Oversight Committee to focus more attention on the agencies’ political leadership – where it belongs and where pressure might have an effect. Rep. Lawrence seems interested in continuing efforts. Rep. Hurd of Texas asked about steps to prevent plant pest introductions (none of the witnesses knew about APHIS programs). Furthermore, a second Michigander, Rep. Dan Benisheck, and a Californian, Rep. Mike Thompson, co-chair the Invasive Species Caucus. Although none of them has yet expressed concern about tree-killing pests, given where they are from they might be persuaded to engage.

At present, the only Congressional champion for effective invasive species programs – especially as regards tree-killing pests – is Senator Leahy of Vermont. He has helped prevent further cuts in budgets for APHIS and USFS. We need more friends in Congress.

I urge you – and your friends! – to contact your Representatives and Senators to explain how invasive species are damaging important ecological and economic resources in your state. Ask them to work with their colleagues to support and improve federal programs aimed at preventing new introductions, containing species already introduced, and developing effective methods to reduce pests’ impacts and restore native forests.

Posted by Faith Campbell

Trans-Pacific Trade Partnership – implications for pests in forests

containers at Long Beach

The aim of the TPP is to further expand trade between the U.S. & Canada and other nations bordering the Pacific. (This does not include China, which is not a party to the pact). At same time, completion of a program to widen the Panama Canal means more huge container ships will travel directly to the East coast from Pacific countries. Clearly, rising trade with distant countries – especially those with similar plant genera – raises the risk of pest introductions. Stress federal and state agencies that are already struggling to counter this threat.

The question is whether the TPP agreement itself will exacerbate this threat. Is there language in the agreement that will further hamper adoption and deployment of effective phytosanitary programs?

Fortunately, I think largely not.

The TPP’s section on sanitary and phytosanitary programs – Chapter 7 largely reiterates or clarifies procedures already included in the WTO SPS Agreement and International Plant Protection Convention. TPP provides additional clarity on some points, e.g., transparency & communication.
(Unfortunately, I believe that the SPS Agreement and IPPC already hamper efforts to protect our trees from alien pests – especially those that are not yet known – the infamous “unknown unknowns”. For my analysis see Fading Forests II, available here. A more optimistic analysis of the SPS Agreement as an obstacle to preventing pest introductions is provided by Burgiel et al. 2006, available here.

I am quite pleased to see that the TPP explicitly allows importing countries to consider their level of confidence in the exporting country’s phytosanitary capability when deciding what measures to impose – a very important improvement! This occurs twice:
• Article 7.8: Equivalence

5. In determining the equivalence of a sanitary or phytosanitary measure, an importing Party shall take into account available knowledge, information and relevant experience, as well as the regulatory competence of the exporting Party. [emphasis added]

• Article 7.10: Audits

6. A decision or action taken by the auditing Party as a result of the audit shall be supported by objective evidence and data that can be verified, taking into account the auditing Party’s knowledge of, relevant experience with, and confidence in, the audited Party. This objective evidence and data shall be provided to the audited Party on request. [emphasis added]

I am also pleased that the TPP acknowledges the need to act proactively in the face of a threat. Under Article 7.1, Definitions, the definition of “emergency measure” reads:

“ … a sanitary or phytosanitary measure that is applied by an importing Party to another Party to address an urgent problem of human, animal or plant life or health protection that arises or threatens to arise in the Party applying the measure;” [emphasis added]

The TPP also puts protecting human, animal, or plant life or health first – before facilitating trade – when specifying the agreement’s objectives. See Article 7.2: Objectives, paragraph (a), which reads:
(a) protect human, animal or plant life or health in the territories of the Parties while facilitating and expanding trade by utilising a variety of means to address and seek to resolve sanitary and phytosanitary issues;

The TPP reiterates parties’ rights under the World Trade Organization’s SPS Agreement and IPPC to adopt more stringent regulations as long as they justify such action by both adopting a higher level of protection and conducting a risk assessment appropriate to the circumstances. See especially Article 7.9, paragraph 2:
2. Each Party shall ensure that its sanitary and phytosanitary measures either conform to the relevant international standards, guidelines or recommendations or, if its sanitary and phytosanitary measures do not conform to international standards, guidelines or recommendations, that they are based on documented and objective scientific evidence that is rationally related to the measures, while recognising the Parties’ obligations regarding assessment of risk under Article 5 of the SPS Agreement.

I do worry some about Article 7.11, Import Checks, paragraph 8, which states:

8. An importing Party that prohibits or restricts the importation of a good of another Party on the basis of an adverse result of an import check shall provide an opportunity for a review of the decision and consider any relevant info submitted to assist in the review. The review request and info should be submitted to the importing Party within a reasonable period of time.

How does this requirement apply to the U.S. policy of rejecting shipments in wood packaging that does not comply with ISPM#15? (For discussions of the role of wood packaging as a pathway for introduction of highly damaging pests, review my blogs posted on July 15, August 31, September 11, and October 30.) The U.S. does not currently consult with exporting country before denying entry to individual shipments. Nor do we want the U.S. to be required to do so!

Finally, Article 7.17: Cooperative Technical Consultations, paragraph 5 requires countries to involve “relevant trade and regulatory agencies” but says nothing about including other stakeholders, such as cities or homeowners whose trees are at risk to introduced pests.

Posted by Faith Campbell