Non-Native Pests on North American Conifers: New Overview

Fraser fir killed by balsam woolly adeligid
Clingman’s Dome, Tennessee

A recent study provides an overview of the threat non-native insects pose to conifers in North America. Unfortunately, pathogens are not included in the study. I provide a citation to the study (Mech et al., 2019) at the end of this blog.

The study’s authors based their analysis on 58 insects that specialize on conifers (trees in the families Cupressaceae, Pinaceae, and/or Taxaceae). These were derived from a list of over 500 herbivorous insects identified by Aukema et al. (2010) and Yamanaka et al.  (2015). Mech and colleagues determined that of the approximately 100 conifer species native to North America, 49 have been colonized by one or more of these 58 non-native insects. Three-quarters of the affected trees have been attacked by more than one non-native insect. One tree species was attacked by 21 non-native insects.

Looked at from the opposite perspective, one of the insects attacked 16 novel North American hosts.

Of these 58 insects, only six are causing high impacts, all in the orders Hymenoptera (i.e., sawflies) and Hemiptera (i.e., adelgids, aphids, and scales). (“High impact” is defined as causing mortality in the  localized host population, recognizing potential spread.)

These six are (1) Adelges piceae—balsam woolly adelgid; (2) Adelges tsugae—hemlock woolly adelgid; (3) Elatobium abietinum—green spruce aphid; (4) Gilpinia hercyniae—European spruce sawfly; (5) Matsucoccus matsumurae—red pine scale; and (6) Pristiphora erichsonii—larch sawfly. The high-impact pests included no wood borers, root feeders, or gall makers.

Mech and colleagues analyzed these relationships in an effort to determine factors driving bioinvaders’ impacts. They evaluated the probability of a non-native conifer specialist insect causing high impact on a novel North American host as a function of the following: (a) evolutionary divergence time between native and novel hosts; (b) life history traits of the novel host; (c) evolutionary relationship of the non-native insect to native insects that have coevolved with the shared North American host; and/or (d) the life history traits of the non-native insect.

They found that the major drivers of impact severity for those that feed on foliage and sap  (remember, they did not evaluate other feeding guilds) were:

1) Host’s evolutionary history – Divergence time in millions of years (mya) since North American species diverged from a coevolved host of the insect in its native range. The greatest probability of high impact for a leaf-feeding specialist was on a novel conifer that diverged from the native conifer host recently (~1.5–5 mya). The divergence time for peak impact was longer for sap‐feeders (~12–17 mya). The predictive power of the divergence-time factor was stronger for sap-feeders than for leaf feeders.

2) Shade tolerance and drought intolerance – A tree species with greater shade tolerance and lower drought tolerance is more vulnerable to severe impacts. This profile fits most species of Abies, Picea, and Tsuga. On the other hand, novel hosts with low shade tolerance and higher drought tolerance had a very low likelihood of suffering severe impacts.

a bad infestation of hemlock woolly adelgid

3) Insect evolutionary history – When a non-native insect shares a host with a closely related herbivore native to North America, the invader is less likely to cause severe impacts. However, this factor in isolation had relatively poor predictive performance.

None of the insect life history traits examined, singly or in combination, had predictive value. The traits evaluated were feeding guild, native region, pest status in native range, number of native host genera, voltinism (frequency of egg-laying periods), reproductive strategy, fecundity, and/or mechanism of dispersal.

See Mech et al. (2019) for a discussion of hypotheses that might explain these findings.

My Questions Answered!

The authors inform me that their project will eventually include introduced insects attacking all kinds of trees. The more than 500 insect species that utilize woody hosts have been placed into one of three categories: 1) conifer specialist (only utilizes conifer hosts), 2) hardwood/woody angiosperm specialist (only utilizes hosts in a single angiosperm family), or 3) generalists (utilizes hosts in more than one angiosperm family or both angiosperms and conifers) (Mech pers. comm.) They began with the smallest group – the conifer specialists – so that they could more easily work out kinks in their procedures.

I had asked why the brown spruce longhorned beetle (Tetropium fuscum) – which is established in Nova Scotia – was not included in this study. According to the authors, this cerambycid beetle has been reported to feed occasionally on hardwood species, so it has been placed in the third group.noted above.

SOURCES

Aukema, J.E., D.G. McCullough, B. Von Holle, A.M. Liebhold, K. Britton, & S.J. Frankel. 2010. Historical Accumulation of Nonindigenous Forest Pests in the Continental United States. Bioscience. December 2010 / Vol. 60 No. 11

Mech,  A.M., K.A. Thomas, T.D. Marsico, D.A. Herms, C.R. Allen, M.P. Ayres, K.J. K. Gandhi, J. Gurevitch, N.P. Havill, R.A. Hufbauer, A.M. Liebhold, K.F. Raffa, A.N. Schulz, D.R. Uden, & P.C. Tobin. 2019.  Evolutionary history predicts high-impact invasions by herbivorous insects. Ecol Evol. 2019 Nov; 9(21): 12216–12230.

Yamanaka, T., Morimoto, N. , Nishida, G. M. , Kiritani, K. , Moriya, S. , & Liebhold, A. M. (2015). Comparison of insect invasions in North America, Japan and their Islands. Biological Invasions, 17, 3049–3061. 10.1007/s10530-015-0935-y [CrossRef] [Google Scholar]

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

What the VLB Saga Tells Us About Detection Surveys

Setting Priorities for Surveillance

CBP inspects a pallet suspected for harboring an insect pest

Despite Customs and Border Protection’s heroic efforts to target inspection of wood packaging shipments, based on histories of non-compliance of specific importers’ wood packaging (which I have often praised), the majority of larvae occurring in wood packaging would probably not be intercepted by inspectors. Instead, they would be transported to the cargo’s intended destinations (Wu et al. 2020). I described these problems in the preceding blog about the velvet longhorned beetle (VLB).

As I have noted in the past, CBD detects an average of 800 shipments per year with non-compliant wood packaging. That figure is less than five percent of the 16,500 infested shipping containers that might enter the country each year, based on the estimate by Haack et al., (2014) that one tenth of one percent of incoming wood packaging might be infected.

So there is always a need to improve surveillance for pests that inspection fails to catch. We can do that in at least the following ways:

1) better target detection efforts on the most likely areas where a pest might establish

2) improve collection and use of pest-related information to determine probable hosts, pathways of movement, and potential impacts.

Discovering How the Pest Moves

Sometimes improvements must be linked to individual species – although assisted by knowledge about species with similar life histories, e.g., similar hosts or flight periods or about its close relatives (see Ray’s development of a VLB lure; full citation at end of this blog).  

Other times, improvements might result from more generalizable adjustments.

For example, the pathway analysis undertaken by Krishnankutty and colleagues is one approach to improving geographic targetting. They analyzed aspects of  the velvet longhorned beetle’s pathways of introduction: 1) the types of imports associated with VLB-infested wood packaging; 2) ports where the beetle has been detected in recent years; plus 3) the presence and calculated probable volume of imports for the types of commercial operations considered likely to transport the beetle.

This analysis required access to detailed data from many sources. They included 1) interception data revealing the types of products most often associated with infested wood and the intended destinations of intercepted cargoes; 2) the North American Industry Classification System data listing locations of businesses likely to utilize these products; 3) the beetle’s climatic requirements; and 4) the locations of actual detections of VLB as revealed by Cooperative Agricultural Pest Survey (CAPS) and other trapping programs.

Approaches to Learning More

a Lindgren funnel trap

Relying on traps to detect new pests has several advantages. These include the relative ease of scaling up to larger areas, and – sometimes — the ability to use general lures that attract a variety of insects. Some insects are attracted only, or primarily, to specific lures. Labor intensiveness (and expense) varies with how many traps must be deployed, whether the sites are easily accessible, difficulty extracting trapped insects, and the difficulty sorting the dead insects to find the species of interest.

A second approach is more labor-intensive and expensive, but it gives more information on the target species. This approach is to rear intercepted insect larvae in logs inside containers (to prevent escape) until they reach maturity and emerge. This approach facilitates determination of the species (it is difficult to identify larvae) … and allows an evaluation of feeding behavior – which translates into assessment of the damage caused to the tree.

The Canadian Food Inspection Agency (CFIA) began applying this survey method in 2006. CFIA collects logs from trees in declining health at high risk sites, such as industrial zones, current and historic landfills, and disposal facilities where large volumes of international wood packaging and dunnage are stored for extended periods of time. The logs are obtained from trees removed as part of municipal hazard tree removal programs. CFIA takes the logs to one of four research laboratories (in Toronto, Nova Scotia, Montreal, and North Vancouver), where they are placed in rearing chambers and allowed time to see what insects emerge. The logs are also dissected to reveal the type of damage caused by the insects – that is, determine whether insect was cause of tree mortality [Bullas-Appleton et al. 2014) .

The United States is applying the same approach, but less systematically.

APHIS developed a short-term project aimed at addressing two challenges: identifying larvae found in wood packaging to the species level (larvae intercepted at the border are often identified only to family); and gaining valuable information about the failure of currently required phytosanitary treatments as regards particular genera and species.

In a cooperative project begun in 2012, the DHS Bureau of Customs and Border Protection (CBP) collected live larvae of Cerambycidae and Buprestidae (and, since September of 2015, Siricidae), intercepted during inspection at initially six, later 11 U.S. ports.

mesh bags in which APHIS is rearing larvae obtained from wood packaging inspected by CBD at ports of entry
photo by USDA APHIS

These larvae were sent to an APHIS containment facility where many were reared to adults. Upon emergence, adult specimens were killed and identified by experts working for the National Identification Service. DNA barcodes of dead larvae and the reared adults were defined and compared and any  new information was added to public genetic databases. These DNA barcodes have enhanced the capacity of anyone involved in pest interception and detection to rapidly identify larval stages. In 2017, APHIS determined that it had detected almost the full range of species that might be transported in wood packaging, and stopped funding the project.

As of June 2017, the APHIS project had received 1,289 intercepted wood borers (1,052 cerambycids, 192 buprestids and 45 siricids) from 45 countries (See Nadel et. al 2017). The extensive analysis of velvet longhorned beetle described in my previous blog link was greatly assisted by the resulting data.

Cerambycid larva which was part of the study
photo USDA APHIS

Years before the APHIS project, USDA Forest Service wanted to try applying rearing techniques to aid early detection of insects in the country. At first, the scientists asked residents of Washington, D.C. to identify street trees that appeared to be infested with pests. Those trees were then cut and sections placed in rearing containers to allow scientists to determine what was causing the problem (Harvard Science).

The project was transferred in 2015 to Boston and New York. The Boston location is an arboretum; the advantage of this site is that it has 1) a diversity of tree species; 2) trained staff; and 3) detailed records of most trees on-site (Harvard Science). Project scientists now accept material from stressed, diseased, or dying trees. This material is loaded into sealed barrels and allowed two years for insects to emerge. Since 2015, project scientists have examined 8,605 beetles comprising 223 species. These studies have resulted in 16 new state records, records of some Scolytinae that are rarely collected from traditional trapping methods; documentation of  new host associations; and discovery of one previously undescribed species — Agrilus sp. 9895 (See DiGirolomo, Bohne and Dodds, 2019).

SOURCES

Bullas-Appleton, E., T. Kimoto, J.J. Turgeon. 2014. Discovery of Trichoferus campestris (Coleoptera: Cerambycidae) in Ontario, Canada and first host record in North America. Can. Entomol. 146: 111–116 (2014).

Marc DiGirolomo, Michael Bohne, Kevin Dodds. 2019. Presentation to the 19th Annual Meeting of the Continental Dialogue on Non-Native Forest Insects and Diseases https://continentalforestdialogue.files.wordpress.com/2019/12/bohne.continentaldialogue1.pdf  USFS – Durham, NH – 19th Dialogue meeting

Haack, R. A. 2006. Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Can. J. For. Res. 36: 269–288.

Haack RA, Britton KO, Brockerhoff EG, Cavey JF, Garrett LJ, et al. (2014) Effectiveness of the International Phytosanitary Standard ISPM No. 15 on Reducing Wood Borer Infestation Rates in Wood Packaging Material Entering the United States. PLoS ONE 9(5): e96611. doi:10.1371/journal.pone.0096611

Krishnankutty, S.M., K. Bigsby, J. Hastings, Y. Takeuchi, Y. Wu, S.W. Lingafelter, H. Nadel, S.W. Myers, and A.M. Ray. 2020. Predicting Establishment Potential of an Invasive Wood-Boring Beetle, Trichoferus campestris (Coleoptera: Cerambycidae) in the United States. Annals of the Entomological Society of America, 113(2), 2020, 88-99.  https://doi.org/10.1093/aesa/saz051    

Nadel, H. S. Meyers, J. Molongoski, Y. Wu, S. Lingafelter, A. Ray, S. Krishnankutty, A. Taylor.  2017. Identification of Port Interceptions in Wood Packing Material Cumulative Progress Report, April 2012 – June 2017

Ray, A.M., J. Francese, Y. Zou, K. Watson, D.J Crook, and J.G. Millar. 2019. Isolation and identification of a male-produced aggregation sex pheromone for the velvet longhorned beetle, Trichoferus campestris. Scientific Reports 2019. 9:4459. https://doi.org/10.1038/s41598-019-41047-x

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

Have we dodged a bullet? (more like a burst of fire from a submachine gun)

Many highly damaging wood-borers have been introduced to North America in wood packaging.

One woodborer, a beetle in the Cerambycidae, has been introduced multiple times to the United States — both before and after implementation of ISPM#15, the international regulations designed to stop such introductions. This is the velvet longhorned beetle (VLB) (Trichoferus (=Hesperophanes) campestris). Independent scientists have recently documented how VLB is introduced and where it is established.

I first blogged about the VLB three years ago. At that time, I asked why APHIS had not undertaken a quarantine and other actions to contain or eradicate the beetle, which was clearly established in an orchard in Utah (Wu et al. 2020; full source citations appear at the end of the blog). Now, the VLB is established in three states and has been detected in many more (details below).

It appears that the VLB will not cause significant damage. I hope this proves true, because it is certainly travelling here on a regular basis. While the most detailed study of the VLB’s potential impact in North America is not yet complete, early indications are that the beetle attacks mostly dying or dead trees.

A Widespread and Adaptable Pest

The VLB is native to China, Central Asia, Japan, Korea, Mongolia, and Russia. It has also been recorded in several European countries. The risk of introduction is broader, however. VLB has established throughout the Middle East and Europe, as well as parts of South and Central America. U.S. officials have intercepted live VLB individuals in shipments originating from these introduced populations, i.e., Brazil, Italy, Mexico, and Spain (Ray et al. 2019).

Wu et al. (2020) studied the genetic diversity of VLB specimens collected by in the United States by 1) trapping at several locations and 2) by testing those intercepted in wood packaging at U.S. ports. The scientists found high levels of diversity between and even within each limited geographic population. These results indicate that VLB has been introduced numerous times via the wood packaging pathway. They also found some evidence that introduced VLB populations might be expanding so it is important to understand pathways of spread within the country (Wu et al. 2020).

Where VLB is in the United States

The VLB is now officially considered to be established in Cook and DuPage counties, IL; Salt Lake County, UT; and Milwaukee, WI. [Krishnankutty et al. 2020).

However, adults have been detected in 26 counties in 13 additional states, plus Puerto Rico, since 1992. Since a trapping survey for woodborers began in 1999, this joint federal and state Cooperative Agricultural Pest Survey (CAPS) has trapped VLB in Colorado (2013), Illinois (2009), New Jersey (2007, 2013), New York (2014, 2016–2018), Ohio (2009, 2017–2019), Pennsylvania (2016), Rhode Island (2006), and Utah (2010, 2012–2019). (Krishnankutty et al. 2020). Also, Oregon detected VLB in 2019 (Oregon Department of Agriculture 2019).

Interceptions in Wood Packaging

The velvet longhorned beetle has been detected frequently in wood packaging since at least the middle 1980s (when APHIS began recording interceptions) (Haack 2006). (Haack’s study covered 1985-2000, before implementation of the International Standard on Phytosanitary Measures (ISPM) #15.)

APHIS’ official interception database listed 60 separate interceptions of VLB in the more recent ten plus-year period June 1997 – November 2017 – which overlaps pre- and post-implementation of ISPM#15. Eighty-eight percent of these interceptions were in wood packaging. Seven percent were in wood products. The remaining seven percent were in passenger baggage or unidentified products.

As has been the case generally since ISPM#15 was adopted, a high percentage — 65.4% — of the intercepted wood packaging during this period bore the mark certifying compliance with the ISPM#15 treatment requirements. Unsurprisingly, China was the origin of 81.6% of the intercepted shipments infested by pests (Krishnankutty et al. 2020).

In the most recent data studied, all from the period after implementation of ISPM#15 — 2012 – 2017, 28 VLB were found in analyses of a sample of wood packaging (Nadel et al. 2017). (I will discuss this study and other detection tools in a separate blog.)

In agreement with earlier findings, the most high-risk imports were determined to be wood packaging for stone, cement, ceramic tile, metal, machinery, manufactured wood products (furniture, decorative items, new pallets, etc.), and wood-processing facilities (Krishnankutty et al. 2020).

These findings largely confirm what we already know about the wood packaging pathway and high levels of non-compliance with ISPM#15 by Chinese shippers. What is APHIS going to do about this well-documented problem? APHIS certainly shouldn’t ignore these findings on the grounds that this particular wood-borer is less damaging than many others. Any chink in our phytosanitary programs that allows transport and entry of VLB can – does! – allow introduction of other woodborers.

The VLB also has been found in rustic furniture – often after the furniture has been sold to consumers. I discussed a 2016 example of this pathways in my February 2017 blog. Krishnankutty et al. (2020) suggest other possible pathways are wooden decorative items and nursery stock, particularly penjing (artificially dwarfed trees and shrubs).

Krishnankutty et al. (2020) note the importance of proper disposal of wood packaging once the cargo reaches its destination. Have any state phytosanitary officials enacted regulations targetting this source of invaders?

The Risk to North America’s Forests Is Unknown

A climate-based model described in Krishnankutty et al. (2020) suggests that climate appears to be suitable for VLB across much of the continental United States, northern Mexico, and southern Canada. Only Florida, southern Texas, and high elevation and coastal regions of the western United States and Mexico states are unlikely to support the velvet longhorned beetle, based on climate. (The study did not consider whether host trees would be present.)

Asian and European sources list a broad host range consisting of at least 40 genera of conifers, hardwoods, and fruit trees (Krishnankutty et al. 2020). Still, as noted above, new studies seem to indicate a minimal impact on healthy trees in North America. Indeed, the principal Utah outbreak is in an orchard littered with pruned material.

With so many suitable hosts across so much of the country, the potential for damage is frightening.

Setting Priorities for Surveillance

The availability of data on both port interceptions and multiple detected outbreaks provides an opportunity to test procedures for carrying out early detection surveys. Improving the efficacy of early detection is critical since – as Wu et al. (2020) note – — the majority of infesting larvae would probably not be intercepted and would subsequently be transported to the cargo’s intended destinations. This is despite CBP’s best efforts to target inspection of wood packaging shipments based on shippers’ histories of non-compliance, targeting that I strongly support.

In response to this concern, Krishnankutty et al. (2020) analyzed pathways of introduction – 1) the types of imports associated with VLB-infested wood packaging, 2) ports where the beetle has been detected in recent years, plus 3) the presence and calculated probable volume of imports of types of commercial operations considered likely to transport the beetle. These included wholesale and retail sellers of products known to be risky and businesses involved with wood fuel processing, log hauling, logging, and milling of saw lumber (Krishnankutty et al. 2020).

They could test the value of this approach by comparing the calculated “intended destination counties” declared at import to actual detections of T. campestris. VLB was detected (by CAPS or other surveys) in either the same or a neighboring county for 40% of the intended destination counties.

This seems to be a high introduction rate; detections will probably rise now that a species-specific lure is available. What could this mean for the establishment rate? Is anyone going to repeat the comparisons to track such changes? Unfortunately, we lack sufficient data to compare the VLB establishment rate (whatever it turns out to be) to the rate for other wood-borers.

Focusing on their original intentions, Krishnankutty and colleagues considered the 40% correlation between intended destinations and VLB detections to be sufficiently rewarding to be one basis for setting priorities for surveys (Krishnankutty et al. 2020).

Krishnankutty et al. (2020) say that recognition of three established populations and widespread destinations of potentially infested wood packaging to climatically suitable areas points to the need to determine whether additional populations are already established – or might soon become so. I add this need is further supported by the frequent detections of low numbers of the VLB in at least seven other states (see above). They call for enhanced surveillance to determine where the VLB is.

Improved surveillance is now facilitated by Dr. Ann Ray’s identification of a specific pheromone that can be synthesized in a lab and used to lure VLB to traps. The pheromone is much more effective in attracting VLB than previous food-like lures used by CAPS as general-purpose attractants for wood-boring insects.APHIS had provided about $50,000 over four years from the Plant Pest and Disease Management and Disaster Prevention program (which receives funding through the Farm Bill) to Dr. Ray’s search for the species-specific pheromone.

what happens when detection fails –
dead champion green ash in Michigan

I will discuss detection efforts in a separate blog.

SOURCES

Bullas-Appleton, E., T. Kimoto, J.J. Turgeon. 2014. Discovery of Trichoferus campestris (Coleoptera: Cerambycidae) in Ontario, Canada and first host record in North America. Can. Entomol. 146: 111–116 (2014).

Haack, R. A. 2006. Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Can. J. For. Res. 36: 269–288.

Krishnankutty, S.M., K. Bigsby, J. Hastings, Y. Takeuchi, Y. Wu, S.W. Lingafelter, H. Nadel, S.W. Myers, and A.M. Ray. 2020. Predicting Establishment Potential of an Invasive Wood-Boring Beetle, Trichoferus campestris (Coleoptera:) in the United States. Annals of the Entomological Society of America, XX(X), 2020, 1–12

Nadel, H. S. Meyers, J. Molongoski, Y. Wu, S. Lingafelter, A. Ray, S. Krishnankutty, A. Taylor. 2017. Identification of Port Interceptions in Wood Packing Material Cumulative Progress Report, April 2012 – June 2017

Oregon Department of Agriculture, Plant Protection & Conservation Programs. 2019. Annual Report 2019.

 Ray, A.M., J. Francese, Y. Zou, K. Watson, D.J Crook, and J.G. Millar. 2019. Isolation and identification of a male-produced aggregation sex pheromone for the velvet longhorned beetle, Trichoferus campestris. Scientific Reports 2019. 9:4459. https://doi.org/10.1038/s41598-019-41047-x

Wu, Y., S.M. Krishnankutty, K.A. Vieira, B. Wang. 2020. Invasion of Trichoferus campestris (Coleoptera: Cerambycidae) into the United States characterized by high levels of genetic diversity and recurrent intros. Biological Invasions Volume 22, pages1309–1323(2020)

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

SOD – questions that need answers

SOD in the nurseries

infected rhododendron
photo by Jennifer Parke
Oregon State University

As you may remember, in May 2019, we became aware of a troubling outbreak of the sudden oak death pathogen Phytophtora ramorum in the nursery trade. The discovery was made by Indiana authorities, who carefully inspected plants being sold in the state.

Briefly, 28 states initially learned that they might have received plants from the suspect sources. Later, APHIS determined that plants exposed to the pathogen had been sent to 18 states – Alabama, Arkansas, Iowa, Illinois, Indiana, Kansas, Kentucky, Michigan, Missouri, Nebraska, North Carolina, Ohio, Oklahoma, Pennsylvania, Tennessee, Texas, Virginia, and West Virginia. Of these, seven (Iowa, Illinois. Indiana, Kansas, Missouri, Nebraska, Oklahoma) plus Washington were known to have received P. ramorum-positive nursery stock. [California Oak Mortality Task Force Newsletter August 2019]

The 2019 episode was just the latest of several occasions since 2004 in which infected plants have been widely distributed by the nursery trade, despite federal and state regulations.

APHIS delays in explaining the situation and what actions it was taking led the states to complain through a letter from the National Plant Board.

For discussions of the 2019 espisode, see my earlier blog or the California Oak Mortality Task Force newsletter for February 2020.

What have we learned from this episode?

1) Three West coast states – California, Oregon, and Washington – are a usual source for the nursery trade of plant taxa that happen to host the P. ramorum pathogen plants. These states’ climates are conducive to growth of these plants and of the pathogen. After repeated nursery outbreaks over 16 years, I think it is time to question continued reliance on such a high-risk source for these plants.

2) APHIS funds the federally-mandated inspection programs in the three states through the “specialty crops” line of the agency’s annual appropriations. Funding levels have apparently remained steady in recent years (COMTF Feb 2020), despite increases in the overall funding for the “specialty crops” line in recent years. I – and some of you! – have lobbied for these increases precisely in order to address the P. ramorum threat. Why has the funding not been increased?

3) While APHIS allocated $352,945 (COMTF February 2020) from the Plant Pest and Disease Management and Disaster Prevention program to help states carry out nursery surveys in 14 states following the 2019 incident, some of the affected states were not included in the program and some states that had not received suspect plants were. States that did not get funding in Fiscal Year 2020 (2020 award report) included three where P. ramorum-positive plants were detected: Iowa, Illinois, and Indiana; and one state that had a scare – Pennsylvania received plants but none tested positive. Seven states received P. ramorum survey funds through the Plant Pest and Disease Management and Disaster Prevention program although they had not received positive plants in the 2019 incident. These were Maryland, Massachusetts, Nevada, New York, North Dakota, Rhode Island, and South Carolina.

The Plant Pest and Disease Management and Disaster Prevention program distributes $70 million annually, and is not subject to annual appropriations. Does a national crisis play any role in determining which projects get funded? Or are decisions made entirely on a proposal by proposal basis and so depend on states’ priorities and individuals’ grant-writing skills?

4) Even now, on the verge of a new plant shipping season (if one occurs given the Covid-19 virus shutdowns), I have seen no public information clarifying how the inspection systems in Washington, British Columbia, and at the U.S. border failed to detect the infested plants before they were shipped. Trace-back efforts carried out by state and U.S. authorities pointed to a nursery in British Columbia as the original source of the infested plants. However, the Canadian Food Inspection Service (CFIA) determined that no Canadian nursery shipped infected plants to the U.S. in 2018 or 2019. See the next paragraph for a description of APHIS’ efforts to resolve this discrepancy.

According to information in the Oregon Department of Agriculture report for 2019, plant imports from Canada are inspected by DHS Customs and Border Protection (CBP) agriculture specialists, not by APHIS. Apparently, CBP has been relying on rules applicable to fruits and vegetables (Q-56) rather than the more stringent provisions of the plants for planting regulation (Q-37). Alerted by Oregon to the importation of 15 Euonymus plants infested by a federally-designated quarantine pest (a thrips), the National Plant Board sent a letter to APHIS in August 2019 asking that it correct CBP’s inspection process.

In March 2020, APHIS sent a letter to the states saying it had amended its Manual and guidance to CBP agricultural inspectors to clarify that all plants for planting must be handled in accordance with the more stringent Q-37 regulations. Furthermore, APHIS is working with CFIA to clarify understanding of each other’s P. ramorum procedures. The letter states that APHIS might consider prohibiting importation of P. ramorum hosts from Canada until CFIA demonstrates that it has adopted effective management measures.

This action by APHIS demonstrates a new seriousness in addressing P. ramorum. I hope this gravitas will persist and carry through to 1) strengthening theregulatory conditions governing domestic production and sales see following section); 2) providing financial and other support to the states (see above about the “specialty crops” appropriation); 3) funding additional studies to clarify the host list and modes of transmission; and 4) using its authority under NAPPRA to curtail imports of plants from Vietnam and other areas where there are large numbers of newly detected Phytophthora species that might threaten North American plant species.  

infested plants detected by Indiana inspectors

I question sufficiency of inspection and mitigation regime

(as described in the February 2020 COMTF newsletter)

When alerted to the infected plants turning up in Indiana, in May 2019, Washington State Department of Agriculture (WSDA) began trace-back investigations. The large wholesale shipping nursery that supplied the plants appears to have acted quite responsibly – it destroy 54,000 plants, cooperated in the Critical Control Point assessment, and implemented mitigation actions. However, I am disturbed to read that the destruction of plants in the 10-meter quarantine radius from plants detected to be infected was a voluntary action. Why don’t the regulations require destruction of nearby hosts?

Descriptions of the western states’ inspection systems – those tied to this specific nursery episode and routine inspections under federal and state P. ramorum programs – indicate to me that P. ramorum is circulating in nurseries in the west coast states, but is evading detection. I cite examples from all three states.

One of the positive nurseries in California in 2019 had been found to be positive in previous years and is considered to be in compliance with quarantine regulations. Yet these measures have not been sufficient to ensure that the nursery is pathogen-free now – as illustrated by its testing positive in 2019.

In Oregon, a retail nursery found to have infected plants destroyed all host material located in the block. Is this action sufficient to ensure that the nursery is now pathogen free? What about the soil, water, cull piles, etc.?  Oregon trace-back surveys led to various suppliers that had previously not been known to be infested. This leads me to think that the pathogen is circulating below regulators’ attention.

In the wake of the 2019 crisis, Washington State Department of Agriculture (WSSA) inspected “opt-out” nurseries – those that had decided not to join APHIS’ program to ship interstate, but continued to ship within the state. WSDA relied on visual inspection only of host material; the agency collected no samples from plants or nursery soils, water, or plant waste (Feb 2020 COMTF). Given all we know about the difficulty of detecting P. ramorum, I think we need more intense inspections that do sample soils, water, and any nearby plant waste (cull piles).

Meaning of Stream Detections?

The P. ramorum pathogen continues to turn up regularly in water bodies. At a botanical garden in Washington State, plant samples have been negative since February 2016. However, water baits from a small pond were positive in 2019 and previous years. Washington’s Sammamish Riverhas been positive since 2007. In the Southeast, seven streams tested positive in 2019. Most if not all have been positive consistently or at least repeatedly for years. All these positive streams are associated with nurseries previously positive for the pathogen. However, plants in the vicinities of these streams show no symptoms.

The same is true in Vietnam: P. ramorum was found in seven out of eight high-elevation streams sampled, but none of the plants belonging to families that have proved highly vulnerable in North America and Europe had any disease symptoms (Jung et al, 2020. A Survey in Natural Forest Ecosystems of Vietnam Reveals High Diversity of both New and Described Phytophthora Taxa including P. ramorum. Forests, 2020, 11). The Jung et al. 2020 findings are discussed in the COMTF Feb. 2020 newsletter and my recent blog.

SOD in the woods

dead coast live oak in California
Joseph O’Brien, USFS

The COMTF February 2020 newsletter summarizes the worrying increase in disease in California woodlands in recent years, which followed the record wet spring of 2017. Aerial surveys documented a big increase in dead tanoak trees and affected acreages in 2018, followed by a smaller increase in 2019 – although still much higher than in 2017. [Details: in 2017, 21,000 dead trees were mapped across 18,000 acres; in 2018, 1.6 million dead trees across 106,000 acres; in 2019, 885,000 dead trees across 92,000 acres.]

California officially records as infested only those counties where infestations have been confirmed by California Department of Food and Agriculture or county Agricultural Commissioners. California currently lists 15 counties as infested. Recent observations by academics or other non-officials of Phytophthora ramorum in Del Norte and San Luis Obispo counties have not yet been confirmed by officials so neither is included in the official quarantine. I understand the need to be certain about reported detections, but we should remember that the disease is probably more widespread than official data indicate.

The newsletter reports Oregon’s treatment efforts – which have totaled 7,300 acres since 2001. I am pleased that Oregon Department of Forestry now has an Environmental Quality Incentives Program (EQIP) project with the USDA Natural Resources Conservation Service and that both the Bureau of Land Management and USDA Forest Service are treating infected areas.

treatment of SOD-infested site
in Oregon
USFS

Still, the quarantine area now covers 31% of Curry County, the EU1 lineage is established in the forest, and ODF and its partners lack sufficient resources to treat all infected areas.

Washington State doesn’t have (known) forest infestations, but it continues to find the pathogen in water bodies; the Sammamish River in King County has been positive since 2007.

In the East, seven states (Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Texas) participated in the USFS Cooperative Sudden Oak Death Early Detection Stream Survey in 2019. A total of 48 streams were surveyed. P. ramorum was detected from seven streams – five in Alabama, one in Mississippi, and one in North Carolina. All positive streams were associated with nurseries previously positive for the pathogen.

Finally, the newsletter summarizes an article providing advice on managing SOD’s impacts – specifically, conservation of tanoak.

SOURCES

February 2020 issue of the California Oak Mortality Task Force newsletter http://www.suddenoakdeath.org/wp-content/uploads/2020/02/COMTF-Report-February.pdf

Oregon Department of Agriculture Plant Protection and Conservation 2019 annual report

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.