Two More Key Studies: Forest Pests and Carbon

hemlock woolly adelgid – a pest that has spread north as result of warmer winters; photo from bugwood.org

I recently posted a blog reviewing impacts of insects and pathogens on efforts to sequester atmospheric carbon in forests. I want to add two other studies. The first, by Weed, Ayers, and Hicke (2013; full citation at end of this blog), delved more deeply into three mechanisms by which climate and atmospheric changes associated with increasing greenhouse gases influence biotic disturbances: (1) effects on the physiology of insects and pathogens that cause changes in their abundance and distribution; (2) effects on tree defenses and tolerance; and (3) effects on interactions between disturbance agents and their own enemies, competitors, and mutualists. They also looked at interaction of tree-killing pests with other sources of forest disturbances – e.g., wildfires, drought, bioinvasions by organisms other than insects and pathogens, and human conversion of forested land to other uses. Tree-killing pests can promote destabilizing positive feedbacks with these other sources of forest disturbances. Weed, Ayers, and Hicke (2013) express the concern that recurrent forest disturbances caused by insects and pathogens might counteract carbon mitigation strategies. [This concern is similar to findings by Quirion et al. (2021) cited in the previous blog and by USDA Forest Service scientists studying disturbance agents in western forests (Barrett et al. 2021).  

A second study by Clark and D’Amato (2021) looks intensively at forest growth and change in four types of secondary forests in New England to discover climate change dynamics and their resulting relative ability to sequester atmospheric carbon.

A 2013 Study by Weed, Ayers, and Hicke

Weed, Ayers, and Hicke (2013) begin from the premise that epidemics of forest insects and diseases (native and introduced) are the dominant sources of disturbance to North American forests. They note that, on a global scale, bioinvasions might be at least as important as climate change as threats to the sustainability of forest ecosystems. As agreed by most authorities, they find that the underlying cause of bioinvasions is propagule pressure from global transport, not climate change. However, climate change is strongly connected to management of continuing invasions.

Weed, Ayers, and Hicke (2013) review 79 studies published 1950 – 2012 which addressed a total of 27 insects and 22 diseases. Despite their opening focus on introduced pests, and the fact that six of the insects and nine of the diseases are nonindigenous, most of the research they were able to review has been on native organisms, principally on two species: the mountain pine beetle and southern pine beetle. Less is known about pathogens’ interaction with changes to climate than about insects’. A further complicating factor is the need to study both the insect and the pathogen when considering diseases vectored by insects (e.g., beech bark disease, oak wilt, Dutch elm disease, black stain root diseases, laurel wilt, thousand cankers disease, and pitch canker). [Profiles of most of these diseases are posted here; click on “invasive species”.] It is no surprise, then, that Weed, Ayers, and Hicke (2013) identify several areas where there is insufficient research. They state that despite scientists’ broad knowledge of climate effects on insect and pathogen demography, we still lack capacity to predict pest outbreaks under climate change.

Changing climatic conditions can exacerbate pest-caused disturbances by reducing winter mortality of insects and by increasing the development rate of insects and pathogens during the growing season. The changing conditions can also alter leaf maturation (which affects insect feeding) or synchrony of the life cycles of bark beetles. Contrary to the authors’ expectations, drought does not appear to cause a universal reduction in trees’ creation of defensive chemicals.

Due to pests’ host preferences, these disturbance agents typically alter the composition of tree species within stands – which can change forest types. For example, Weed, Ayers, and Hicke (2013) mention how mountain pine beetles shifted western forests from five needle pines toward subalpine firs. They do not mention balsam woolly adelgid or other fir pests.

The authors expect warming and increases in atmospheric CO2 to promote faster forest maturation in many US regions. Drought, however, will probably slow maturation rates in arid areas such as the southwest and intermountain regions. Climate change increases the likelihood that forest stands will be exposed to different and less suitable climates than those under which the current stands matured, making more stands susceptible to pests.  (The USFS report on western forests said the same — Barrett et al. 2021).  These changes tend to reduce the extent of mature forests and can adversely affect ecosystem services. They note the need for increased capacity to predict future patterns of biotic disturbances and integrate this knowledge with forest ecosystem science and the socioeconomics of human land use.

Weed, Ayers, and Hicke (2013) raise an interesting point regarding the impact of disturbance factors on trees’ ages and sizes. They mention specifically reduction in numbers of large-diameter beech trees due to beech bark disease and elms due to Dutch elm disease. Several large-growing trees, e.g., American chestnut and white pines, have been virtually eliminated from much of their historical ranges. They express the fear that emerald ash borer, sudden oak death, butternut canker, and laurel wilt are in the early stages of having a similar effect on their hosts. [Profiles of most of these pests are posted here; click on “invasive species”.] Weed, Ayers, and Hicke (2013) note the importance to wildlife of this shift – the loss of mature forest habitat changes availability of food supplies, nest cavities, etc. The authors do not relate these specific pest-mediated changes to the climate change-caused alterations. However, they do note that pest impacts exacerbate a situation already arising from loss of mature forests due to human land use patterns.

Weed, Ayers, and Hicke (2013) mention changes in elemental cycling and hydrologic processes resulting from pest-caused mortality; they refer to several studies by Lovett, especially Lovett et al. (2006). These changes can have long-lasting effects on productivity, biodiversity, and elemental cycling. Among them are effects on water transpiration and increased soil moisture and runoff. I had blogged earlier about these impacts as they pertain to black ash swamps. At high elevations, snow accumulates more deeply on the ground while snowmelt is more rapid because loss of canopy will decrease interception of snow by the canopy (leading to reduced sublimation and redistribution of snow) and increase solar radiation to the forest floor.

Weed, Ayers, and Hicke (2013) anticipate that pest outbreaks under climate change will commonly produce persistent changes in the feedbacks that connect biotic communities and elemental cycling.  

Weed, Ayers, and Hicke (2013) summarize their findings as follows:

1) Epidemics of forest pests (native and introduced) exceed other sources of disturbance to North American forests.

2) Insect populations are highly responsive to climate change due to their physiological sensitivity to temperature, high mobility, short generation times, and explosive reproductive potential. Pathogens and declines are also strongly influenced by climate change due to their sensitivity to temperature and moisture. These effects have proven to be more dramatic than expected in the case of pine bark beetles. There is no discussion of whether other insect-host relationships might differ substantially.

3) Changes in biotic disturbance regimes have broad consequences for forest ecosystems and the services they provide to society.

4) Climatic effects on forest pest outbreaks might beget further changes in climate by influencing the exchange of carbon, water, and energy between forests and the atmosphere.

5) In some areas, climate-induced changes might result in increased or decreased disturbance risk.   

eastern white pine; photo by F.T. Campbell

A 2021 Study by Clark and D’Amato

Clark and D’Amato (2021) focused on a research site in New England which provided 69 years of data on succession dynamics. The site has four types of secondary forests. Clark and D’Amato (2021) found that mixed hardwood (oak)-pine systems dominated by large diameter eastern white pine (Pinus strobus) exhibited the greatest increase in biomass over the 69-year period and thus performed best as carbon sinks. These forests also had the greatest structural complexity.

However, these “mixedwood” systems are largely an artifact of past clearing for agriculture and are naturally trending toward greater domination by hardwoods. In fact, new trees growing in all four forest types were predominantly shade-tolerant beech (Fagus grandifolia) and hemlock (Tsuga canadensis). Clark and D’Amato (2021) note that these species are both less compatible with predicted future climatic conditions and are under attack by non-native pests — beech bark disease and hemlock woolly adelgid, respectively. The article makes no mention of possible complications from two other pests of beech, beech leaf disease and beech leaf weevil. [All three pests have profiles here.]

They conclude that if the goal is to maximize carbon sequestration in forests – while maintaining structural complexity – managers must adopt silvicultural strategies intended to maintain the pine component. This strategy is not without risk. Mature white pine constitutes 68% of the biomass in the mixedwood stands. Clark and D’Amato (2021) note that a strategy relying so heavily on one species exposes that strategy to a high risk of catastrophic losses due to stochastic disturbance-related mortality, emerging forest health issues, and/or selective timber harvests targeting the largest trees.  Of course, eastern white pine has already survived one pest, white pine blister rust.

SOURCES

Barrett, T.M. and G.C. Robertson, Editors. 2021. Disturbance and Sustainability in Forests of the Western United States. USDA Forest Service Pacific Northwest Research Station. General Technical Report PNW-GTR-992. March 2021

Clark, P.W. and A.W. D’Amato. 2021. Long-term development of transition hardwood and Pinus strobus – Quercus mixedwood forests with implications for future adaptation and mitigation potential. Forest Ecology and Management 501 (2021) 119654

Lovett, G.M., C.D. Canham, M.A. Arthur, K.C. Weathers, and R.D. Fitzhugh. 2006. Forest Ecosystem Responses to Exotic Pests and Pathogens in Eastern North America. BioScience Vol. 56 No. 5 May 2006)

Lovett, G.M., M. Weiss, A.M. Liebhold, T.P. Holmes, B. Leung, K.F. Lambert, D.A. Orwig, F.T. Campbell, J. Rosenthal, D.G. Mclimate changeullough, R. Wildova, M.P. Ayres, C.D. Canham, D.R. Foster, S.L. Ladeau, and T. Weldy. 2016.  Nonnative forest insects and pathogens in the United States: Impacts and policy options.  Ecological Applications, 26(5), 2016, pp. 1437-1455

Poland, T.M., Patel-Weynand, T., Finch, D., Miniat, C. F., and Lopez, V. (Eds) (2019), Invasive Species in Forests and Grasslands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector.  Springer Verlag.

Weed, A.S., M.P. Ayers, J.A. Hicke. 2013. Consequences of climate change for biotic disturbances in North American forests. Ecological Monographs, 83(4), 2013, pp. 441–470

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

New Study on Forest Carbon and Pests: The Picture is Ugly

lodgepole pines killed by mountain pine beetle in British Columbia; photo courtesy of Wikipedia

Natural systems, especially forests, could provide as much as 37% of the near-term mitigation necessary to meet Paris global climate goals. In the US, conservation, restoration, and improved land management could provide carbon sequestration equivalent to an estimated 21% of current net annual emissions.

However, the current U.S. forest carbon sink, which includes soils and standing and downed wood as well as live trees, might be in jeopardy due to increasing levels of disturbance, conversion, and/or declining sequestration rates in old growth stands.

Insects and plant diseases are one such disturbance agent. Acting alone or in combination with other forest stressors, they can damage or kill large numbers of trees in short periods of time, thereby reducing carbon sequestration and increasing emissions of stored carbon through decomposition of wood in dead or injured trees.

Historically, native and introduced insects and diseases have impacted an estimated 15% of the total U.S. forest cover annually. This impact is likely to increase. One study (Fei et al., 2019) found that an estimated 41% of the live forest biomass in the contiguous U.S. could be impacted by the 15 most damaging introduced pests already established in the U.S. Continuing introductions of new pests and exacerbated effects of native pests associated with climate change portend worsening losses of live trees. These rising impact of pests, combined with more frequent and severe fires and other forest disturbances, are likely to negate efforts to improve forests’ carbon sequestration capacity.

Sources of information about introduced pests’ impacts is available from, inter alia Campbell and Schlarbaum Fading Forests  II and III, Lovett et al 2016, Poland et al. 2021, many  blogs on this site, and pests’ profiles posed here under “invasive species” tab. Chapter 4 of Poland et al. (2021) provides a summary of what is known about interactions between invasive species and climate change – both climate impacts on bioinvaders and bioinvaders’ effect on carbon sequestration.

The United States and other major polluting countries have certain advantages. Their strong economies have the scientific and financial resources needed to implement effective invasive species prevention and forest management strategies. At the same time, many of them receive the most new forest pests – because they are major importers. These introduced pests pose the most serious and urgent near-term ecological threat to their forests and all the ecosystem services forests provide.

So, reducing insect and disease impacts to forests can simultaneously serve several goals—carbon sequestration, biodiversity conservation, and protecting the myriad economic and societal benefits of forests. See the recent IUCN report on threatened tree species.

A Major New Study

A new study by Quirion et al. (2021) takes another step in quantifying the threat to U.S. forests’ ability to sequester carbon by analyzing data from National Forest Inventory plots. Unfortunately, the re-measurement data for the period 2001 – 2019 are not available in the NFI for the Rocky Mountain states, which represents a critical data gap in the NFI program. This gap might not have had a significant impact on the national findings, however, because while the insect damage level (measured by an earlier inventory round) was quite severe in the Rocky Mountain States, the relatively slow growth of trees in that region means carbon sequestration rates are low.

Forest stand productivity – and carbon sequestration — will typically decline immediately after pest outbreaks, then recover or even increase beyond pre-outbreak levels depending on the productivity and maximum achieved biomass of replacement plant species and related soil characteristics. However, when prevalence of the disturbance increases, by, for example, more frequent pest outbreaks, carbon stocks in standing trees and sequestration rates can be reduced for extended periods.

Findings

  • Nationally, insects and diseases have decreased carbon sequestration by live trees on forest land by 12.83 teragrams carbon per year. This equals ~ 9% of the contiguous states’ total annual forest carbon sequestration and equivalent to the CO2 emissions from over 10 million passenger vehicles driven for one year.
  • This estimate includes the impacts of both native and introduced insects and diseases, because the NFI database does not distinguish between them.
  • Insect-caused mortality had a larger impact than disease-caused mortality (see below). Forest plots recently impacted by insect disturbance sequestered on average 69% less carbon in live trees than plots with no recent disturbance. Plots recently impacted by disease disturbance sequestered on average 28% less carbon in live trees than plots with no recent disturbance.
  • Ecoprovinces in which the greatest annual reductions in live tree carbon sequestration due to pests were the Southern Rocky Mountain Steppe, Cascade Mixed Forest, Midwest Broadleaf Forest, and Laurentian Mixed Forest. (Ecoprovinces are outlined – but not named – in Quirion et al. 2021; more complete information is provided in the supplementary material.)

If this study had been carried out in the 1920’s, when chestnut blight and white pine blister rust were spreading across vast areas and killing large trees, the impact of diseases would have been much higher. Today, the most widespread impacts of diseases are on either small trees (e.g., redbay succumbing to laurel wilt) or slow-growing, high-elevation trees (e.g., whitebark and limber pine to white pine blister rust). As long as no equivalents of those earlier diseases are introduced, insects will probably continue to have the larger impacts.

western white pine killed by blister rust; photo from National Archives

Quirion et al. 2021 note that their estimates should be considered conservative. The USFS’s inventory records only major disturbances. That is, when mortality or damage is equal to or exceeds 25% of trees or 50% of an individual tree species’ count on an area of at least 0.4 ha. This criterion largely excludes less severe pest disturbances, including those from which trees recover but which might have temporary negative effects on carbon sequestration.

The study’s authors note that their work has important limitations. The dearth of data from the Rocky Mountain states is one. Other factors not considered include transfers of carbon from live biomass to dead organic matter, soils, and salvaged or preemptively harvested wood products.  As trees die from pests or diseases, their carbon becomes dead wood and decays slowly, producing a lag in the carbon emissions to the atmosphere.  A small fraction of the carbon in dead wood might be incorporated into soil organic matter, further delaying the emissions.  A full accounting of the carbon consequences of pests and diseases would require assessment of these lags, probably through a modeling study.

affects of mountan pine beetle on lodgepole pine in Rocky Mountain National Park, Colorado photo from Wikimedia

Actions to Maintain Carbon Sequestration

Quirion et al. (2021) outline several actions that would help protect the ability of America’s forests to sequester carbon. These suggestions address both native and introduced pests, since both contribute to the threatened reduction in capacity.

Concerning native pests, the authors call for improved forest management, but warn that measures must be tailored to species and environmental context.

Concerning introduced insects and pathogens, Quirion et al. (2021) call for strengthening international trade policies and phytosanitary standards, as well as their enforcement. The focus should be on the principal pathways: wood packaging (click on “wood packaging” category for on this blog site) and imported plants (click on “plants as vectors” category for on this blog site). Specific steps to reduce the rate of introduction of wood-boring insects include enforcement to increase compliance with the international treatment standard (ISPM#15), requiring trade partners – especially those which have repeatedly shipped infested packaging – to switch to packaging made from alternative materials. Introductions via the plant trade could be reduced by requiring foreign shippers to employ integrated management and critical control point systems (per criteria set by the U.S.) and using emergency powers (e.g., NAPPRA) to further restrict imports of the plants associated with the highest pest risk, especially plant species that are congeneric with native woody plants in North America. See Lovett et al 2016; Fading Forests II & III

As backup, since even the most stringent prevention and enforcement will not eliminate all risk, the authors urge increased funding for and research into improved inspection, early detection of new outbreaks, and strategic rapid response to newly detected incursions.

To reduce impacts of pests established on the continent – both recently and years ago – they recommend increasing and stabilizing dedicated funding for classical biocontrol, research into technologies such as sterile-insect release and gene drive, and host resistance breeding.

Thinning is useful in reducing damage by native bark beetles to conifers. However, it has not been successful in controlling introduced pests for which trees do not have an evolved resistance. Indeed, preemptive harvesting of susceptible species can harm forest ecosystems directly through impacts of the harvesting operation and indirectly as individual trees that may exhibit resistance are removed, reducing the species’ ability to develop resistance over time.

Further research is needed to clarify several more issues, including whether introduced pests’ impacts are additive to, or interact with, those of native species and/or other forest stressors.

SOURCE

Quirion BR, Domke GM, Walters BF, Lovett GM, Fargione JE, Greenwood L, Serbesoff-King K, Randall JM & Fei S (2021) P&P Disturbances Correlate With Reduced Carbon Sequestration in Forests of the Contiguous US. Front. For. Glob. Change 4:716582.  [Volume 4 | Article 716582] doi: 10.3389/ffgc.2021.716582

SOURCES of additional information

Campbell, F.T. and S.E. Schlarbaum. Fading Forest reports at http://treeimprovement.utk.edu/FadingForests.htm

Lovett, G.M., M. Weiss, A.M. Liebhold, T.P. Holmes, B. Leung, K.F. Lambert, D.A. Orwig, F.T. Campbell, J. Rosenthal, D.G. McCullough, R. Wildova, M.P. Ayres, C.D. Canham, D.R. Foster, S.L. Ladeau, and T. Weldy. 2016.  Nonnative forest insects and pathogens in the United States: Impacts and policy options.  Ecological Applications, 26(5), 2016, pp. 1437-1455

Poland, T.M., Patel-Weynand, T., Finch, D., Miniat, C. F., and Lopez, V. (Eds) (2019), Invasive Species in Forests and Grasslands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector.  Springer Verlag. Available for download at no cost at https://www.fs.usda.gov/treesearch/pubs/61982

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Eight Hawaiian birds: gone forever

large Kaua’i thrush; specimen photographed by Huub Veldhuizen van Zanten / Naturalis Biodiversity Center; via Wikimedia commons

I usually blog about tree pests but the bioinvasion disasters in Hawai`i and Guam also attract my attention. I have blogged in the past about insect or pathogen threats to Hawaiʻi’s ‘ōhi‘a trees and other native plants of Hawaiʻi and Guam.

Some of the most difficult and tragic of the invasive species threats in Hawaiʻi are avian diseases vectored by introduced mosquitos. Avian pox and especially avian malaria have already caused extinction of numerous bird species, and continue to threaten many of the remaining endemic species.

I regret that it takes extinction to bring overdue attention to the threats to Hawaiian birds. The USFWS has proposed to remove eight species of Hawaiian birds and one from Guam from the list of endangered species because they are extinct.  

[If you prefer to see living birds, visit here.]

Distressing as is the current determination of extinctions, it is just the tip of iceberg. Since people colonized the Hawaiian Islands 1,500 years ago, 71 bird species have become extinct, 48 before the arrival of Europeans and 23 since Captain James Cook’s arrival in 1778. Historically, more than 50 different honeycreepers lived in Hawaiʻi; today, only 17 species remain. Eight of these have been federally listed as endangered or threatened under the Endangered Species Act. A ninth bird species – a flycatcher – also has been listed. Another honeycreeper, i`iwi (Drepanis (Vestiaria) coccinea) is listed as threatened on Kauaʻi. As noted, the USFWS now says eight of these species (six honeycreepers, an ʻĀkepa, and one thrush) are actually extinct.

FWS will accept comments received or postmarked on or before November 29, 2021. To have an impact, comments must be substantive, not just a statement of support or opposition. The USFWS action includes 14 other species, among them the ivory-billed woodpecker, Bachman’s warbler, a bat, fish, and freshwater mussels.

Maui nakupu’u specimen photographed by Huub Veldhuizen van Zanten / Naturalis Biodiversity Center; via Wikimedia Commons

In describing the threats to the Pacific Island birds, the USFWS proposal focuses on non-native diseases, specifically avian pox and avian malaria. USFWS also mentions introduced vertebrates – especially predators such as cats, rats, and mongoose; and invasive plants. Because it does not deal with those bird species that continue to exist, the notice does not mention prospective threats. For example, constant vigilance is needed against possible introduction (from Guam) of the brown tree snake. Also needed is a strategy to counter rapid ‘ōhi‘a death, which threatens widespread mortality of the ‘ōhi‘a lehua tree (Metrosideros polymorpha).

I`iwi feeding on ohi’a in Hakalau Forest NWR, Hawai’i; photo by Daniel J. Lebbin, American Bird Conservancy

The USFWS proposal describes significant efforts over the past 50 years to restore bird species, including implementation of two recovery plans and numerous surveys trying to find remnant populations. However, none of these projects could counter the effects of the mosquito-vectored pox virus (Avipoxvirus) and avian malaria (Plasmodium relictum). The primary vector, Culex quinquefasciatus, was introduced to the islands in 1826. It has already reached the 6000 feet elevation level. Two other mosquitoes, Aedes albopictus and A. aegypti, may also spread avian pox.  The former has been present in Hawai`i since 1896. The Aedes mosquitoes are – so far – at elevations of ~4,000 feet. However, they are expected to spread higher as the climate warms. The Hawaiian honeycreepers (subfamily Drepanidinae) are highly susceptible to these diseases. As a result, many of these bird species have disappeared from areas below ~ 4,500 feet (1,372 meters) over the last century.

One result of climate change is that mosquitoes are now able to penetrate even higher, up to 6000 feet. Only the islands of Hawai`i (the Big Island) and Maui have forests above this higher elevation.

The descriptions of the eight species purported to be extinct demonstrates the impact of many threats, but especially the diseases. Of the eight species, four are found on the island of Kauaʻi. Three were listed as endangered in 1967, when the U.S.’ first endangered species law came into force. The fourth was listed just a few years later, in 1970. The highest elevation on Kauaiʻ is 5,100 feet.

  • Kauaʻi ʻakialoa (Akialoa stejnegeri) listed (as Hemignathus stejnegeri) in 1967, about the time of the last confirmed observations. The species used to be widespread on Kauaʻi and occupied all forest types above 656 feet (200 meters).
  • Kauaʻi nukupuʻu (Hemignathus hanapepe) listed as endangered in 1967. At the time of listing, only two individuals had been reported during the 20th Century. The original extent of its geographic range is unknown.
  • Kauaʻi ‘o‘o (Moho braccatus) listed as endangered in 1967. At the time of listing, the population size was estimated at 36 individuals. The last plausible record was a vocal response to a recording in 1987. Its last known habitat was the dense ‘ōhi‘a lehua forest in the valleys of Alakaʻi Wilderness Preserve. It reportedly fed on various invertebrates and the fruits and nectar from ‘ōhi‘a lehua, lobelia, and other flowering plants. The original extent of its geographic range is unknown. 
  • Large Kauaʻi thrush (Myadestes myadestinus) listed as endangered in 1970. At the time of listing, the population size was estimated at 337 individuals. The last unconfirmed and confirmed sightings occurred in the late 1980s.

Three of the putatively extinct species are found on the island of Maui. Maui’s highest point, Haleakalā, reaches 10,000 feet. Two of these species were listed in 1970. The third was discovered in 1973! This demonstrates how difficult it is to survey dense forests on steep, highly uneven volcanic slopes – especially when the substrate is a’a lava!

  • Maui ʻĀkepa (Loxops coccineus ochraceus) listed (as Loxops ochraceus) in 1970. At the time of listing, its population was estimated at 230 individuals. The Maui ʻĀkepa preys on various insects and drinks the nectar of ‘ōhi‘a lehua flowers and uses the tree for nesting. The original extent of the geographical range is unknown, but thought probably to include Molokai and Lānaʻi. By the late 19th century all reports were from mid- to high-elevation forests; possibly the birds had already succumbed to the mosquito-vectored diseases. However, even recent surveys have been at too low intensity to definitively demonstrate that the species is extinct.
  • Maui Nukupuʻu (Hemignathus lucidus affinis) listed (as Hemignathus affinis) in 1970. It probably formerly inhabited Molokai. Even in the late 19th century observers noted the restricted distribution and low population density of Maui nukupuʻu. The species was rediscovered in 1967 in the upper reaches of Kīpahulu Valley in Haleakalā National Park, East Maui. The last confirmed sighting was in 1996, from the nearby Hanawī Natural Area Reserve
  • Po‘ouli (Melamprosops phaeosoma) listed as endangered in 1975, two years after its discovery. At the time of listing, its population was estimated at 140. Fossil evidence indicated it once had a much broader geographic and habitat range. It foraged on tree branches, preferring several native shrubs and trees, including ‘ōhi‘a lehua. Attempts were made to breed the species in captivity in the early 2000s, but these failed. The last two birds known to exist were last seen in December 2003 and January 2004.
Kipahulu Valley on Maui; photo by Kim and Forrest Starr

The eighth species is from Molokai, which has no elevation higher than 4900 feet.

  • Molokai Creeper (Paroeomyza flammea) listed in 1970.  At the time of listing, the Molokai creeper was considered extremely rare. It gleaned insects from vegetation and bark in wet ‘ōhi‘a lehua, forests. Molokai creeper was common in 1907, but by the 1930s, it was considered in danger of extinction. It was last detected in 1963.

Time is running out for Hawaiʻi’s native birds. In 2016 the USFWS listed yet another Hawaiian honeycreeper, the formerly ubiquitous ʻiʻiwi. (Drepanis (Vestiaria) coccinea), as threatened on Kauaʻi. Conservationists recognize the need to combat the mosquitoes.

While I mourn the recent extinction of several Hawaiian forest birds, I celebrate the decision by Hawaiian-based conservation entities to adopt innovative strategies to counter the invasive species threat.

An Innovative and Bold Initiative

The delisting proposal mentions a hopeful development: creation of a multi-agency consortium called “Birds, Not Mosquitoes”. Participating agencies include the Hawaiʻi Department of Land and Natural Resources, Hawaiʻi Department of Health, U.S. Fish and Wildlife Service, University of Hawaiʻi, U.S. Geological Survey, National Park Service, American Bird Conservancy, The Nature Conservancy of Hawaiʻi, Coordinating Group on Alien Pest Species, Island Conservation, and Pacific Rim Conservation. Also involved are the Kauaʻi Forest Bird Recovery Project, Maui Forest Bird Recovery Project, University of Kentucky, and Michigan State University.

Culex quinquefasciatus PIXNIO

The partnership is exploring methods to suppress the mosquito populations. The current focus is on using a common, naturally-occurring bacteria as a “mosquito birth control”. Many insects, including some mosquitoes, carry a naturally-occurring bacterium, Wolbachia. If male and female mosquitoes of the same species carry different, “incompatible” strains of Wolbachia, the eggs wonʻt hatch. The Incompatible Insect Technique (IIT) currently under consideration would intentionally infect male mosquitoes with a specific strain of Wolbachia. These males would then be released to mate with the wild females – and produce infertile eggs. Male mosquitoes donʻt bite humans or birds; the female needs the blood meal to produce eggs.

This method has been successfully used around the globe to reduce populations of mosquitoes that carry human diseases such as dengue fever and malaria. Because of the conservation crisis, the “Birds, Not Mosquitoes” program is seeking permits to moves the project forward as quickly as possible while also ensuring full compliance with all state and federal requirements. Small trial releases would need to happen first to validate success in the field, with larger landscape-scale releases to follow.

Research in Hawaiʻi that is not part of the multi-agency “Birds not Mosquitoes” project is exploring genetic techniques to control mosquitoes. Any such strategy must meet careful safety standards and be registered with federal agencies and within Hawai‘i before use. Because any genetic technique to control mosquitoes is assumed to be more than a decade away and could face considerable public opposition, it likely would not be available in time to prevent additional extinctions of Hawaiʻi’s endemic forest birds.

The “Birds, Not Mosquitoes program” is a multi-year effort to develop the tool, establish the best approach for deploying the tool, and then sustain the effort to keep invasive mosquito populations suppressed. Success can save at least 12 bird species in Hawai`i from extinction, and benefit many more. Funding needs over the next five years are:

* FY2022 – $3 Million

* FY2023 – $5 Million

* FY2024 – 2026 – $7 Million per year

Please contact your Representative and Senators and urge them to support funding for this effort in the Interior Appropriations bills for the coming years.

SOURCE

DEPARTMENT OF THE INTERIOR Fish and Wildlife Service Endangered and Threatened Wildlife and Plants; Removal of 23 Extinct Species From the Lists of Endangered and Threatened Wildlife and Plants ACTION: Proposed rule. 50 CFR Part 17 Federal Register / Vol. 86, No. 187 / Thursday, September 30, 2021

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Burgeoning Imports = backlogs … & higher pest risk?

container ship at Savannah; photo by F.T. Campbell

I have blogged for a year about record-breaking volumes of imports reaching our ports from Asia … so now the media & politicians are aware of these issues! Oh, well …

The traffic jam continues … ports are being pressured to expand their hours of operation … I hope DHS Bureau of Customs and Border Protection (CBP) is keeping up & doing its best to detect & penalize shipments in which the wood packaging violates ISPM#15. I hope CBP is not under pressure from inside the Administration to “expedite” inspections.

Remember, Asia is the origin of many of the most damaging forest pests – e.g., Asian longhorned beetle, emerald ash borer, redbay ambrosia beetle, phytophagous and Kuroshia shot hole borers (for profiles of each visit here). Indeed, 15 of 16 non-native Xyleborini detected in the United States since 2000 are from Asia (Bob Rabaglia, USFS Forest Health Protection, presentation at IUFRO meeting in Prague, September 2021).

Reports of continuing backups:

US containerized imports from Asia totaled almost 1.6 million TEU in September, meaning every month this year has seen imports average almost 20% higher than the historical monthly average of about 1.3 million TEU. Asian imports in September were 13.8% higher than in pre-COVID September 2019. Before imports from Asia surged in the second half of 2020, imports exceeded 1.59 million TEU only once, in October 2018. Now that is the average monthly volume. Shipping and logistics experts expect port-related congestion problems they have experienced all year will continue well into 2022 (Mongelluzzo, October 13, 2021).

Major ports — Los Angeles-Long Beach, Oakland, the Northwest Seaport Alliance of Seattle and Tacoma, Savannah, and New York-New Jersey — have experienced vessel bunching, congested marine terminals, intermodal rail logjams that backed up to the ports from inland rail hubs, and shortages of chassis and labor throughout the transportation supply chain. Vessels at anchor of LA-LB peaked in mid-September at 73 and have remained in the range of 58 to 70 since then (Mongelluzzo, October 13, 2021).

off-loading a container at Port of Savannah; photo by F.T. Campbell

On the other side of the country, at Savannah, imports of cargo-laden containers were 27% higher than in September 2019. Congestion meant that 22 to 27 vessels have been anchored per day awaiting a berth since the first of September. At one point, dwell times for import containers in the port rose to 12 days; this figure has since fallen to 8.4 days. The number of containers sitting at the terminal for more than 21 days has also fallen, from more than 4,000 containers in September to 2,200 now. This congestion results from the rising import volumes from Asia; some shippers are avoiding the California ports. Import volumes from Europe have been flat compared to 2019 – at 1.6 million TEU in the first seven months of 2021. One result is that carriers are now switching to Charleston (Knowler and Ashe, October 14, 2021).

I expect that the rising volume of imports from Asia presents rising opportunities for forest pests (and other invaders) to reach our shores. I hope Department of Agriculture researchers are tracking whether inspectors are now detecting higher numbers of pests in incoming wood packaging and plants. I hope they are also preparing to track detections of pest outbreaks over the next decade to see whether more Asian insects and pathogens become established as a result of the presumably higher propagule pressure.

SOURCES

Knowler, G. and A. Ashe. October 14, 2021. Trans-Atlantic carriers diverting from congested Savannah to Charleston.

https://www.joc.com/port-news/us-ports/port-savannah/trans-atlantic-carriers-diverting-congested-savannah-charleston_20211014.html?utm_source=Eloqua&utm_medium=email&utm_campaign=CL_JOC%20Daily%2010%2F15%2F21_PC00000_e-production_E-116222_KB_1015_0617

Mongelluzzo, B. September impors shod no relief for stressed US ports. October 13, 2021

https://www.joc.com/port-news/us-ports/september-imports-show-no-relief-stressed-us-ports_20211013.html?utm_source=Eloqua&utm_medium=email&utm_campaign=CL_JOC%20Daily%2010%2F14%2F21_PC00000_e-production_E-116084_KB_1014_0617

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Updates on 4 major invaders + APHIS annual report

As of September 2021, a number of new publications or presentations focus on four major forest pests: the Asian longhorned beetle, emerald ash borer, sudden oak death, and the Asian gypsy moth. Here’s a summary.

Asian longhorned beetle (ALB)  

In many ways, the ALB is the poster child for wood-borers introduced in wood packaging (SWPM). ALB has been transported multiple times in the 30 or more years since the world opened to goods from China. Outbreaks have been detected in ~50 locations in North America, Europe, the Middle East (Trotter 2021, full citation at end of the blog), even in Asia – it was detected in Japan in 2002 (eradicated) and 2020 (Shoda-Kagaya 2021). Put another way, 33 countries recorded outbreaks as of July 2021 (Porth 2021). About half of the 50 outbreaks have been eradicated; the remaining are under active management, including four of the largest populations in the U.S. (Trotter 2021)

A Canadian genetic study (Porth 2021) of five U.S. outbreaks (New York/New Jersey, Massachusetts, Illinois, and Ohio) and the two outbreaks in Toronto indicated two major sources of ALB: the North China plain and Korea (source of the Massachusetts populations). The second Toronto outbreak probably began with survivors of the first that escaped eradication. I note that shortly after the New York and Chicago outbreaks were detected, scientists said the most likely source was the northern plains of China, where China had planted large stands of poplars which quickly were attacked by ALB. These trees were made into crates and pallets to support to booming exports.

In Japan, ALB attacks elms, birches, and willows, not maples. Longer study will provide additional information about hosts (Shoda-Kagaya 2021).

A Swiss study (Augustinus 2021) confirms others’ finding that imports of stone are particularly likely to be associated with ALB-infested SWPM.

As I noted in an earlier blog, the latest U.S. outbreak in South Carolina presents several challenges. There are indications that the beetle completes its life cycle much faster in the subtropical climate – possibly within eight months (compared to two years in Massachusetts and Ohio). Also, APHIS is exploring new methods to destroy infested or vulnerable trees because workers can’t use heavy chipping equipment in swamps (Trotter 2021)

swamp in South Carolina where ALB is established; blue arrows indicate red maples photo by David Coyle

Emerald ash borer (EAB)

The EAB has been transported much less frequently in SWPM but once introduced it has proved much more difficult to eradicate or even contain. As a result it has caused much greater destruction. In North America, EAB is established in 35 states and five provinces. In the U.S. alone, an estimated 8.7 billion ash trees are under threat; this represents 2.5% of all U.S. aboveground biomass (de Andrade 2021).

In Europe, EAB is currently established in one province of Ukraine and 18 provinces of Russia. These include areas in St. Petersburg and in the Lower Volga basin that are separated from the core invasion range (Moscow) by 470 and 370 km, respectively. In Moscow EAB has caused mass mortality of European ash (F. excelsior); initial damage had been to the introduced North American species, green ash (Fraxinus pennsylvanica) (Volkovitsh, Bienkowski and Orlova-Bienkowskaja 2021).

In January 2021, USDA APHIS ended its 19-year domestic quarantine and regulation of movement of EAB-infested wood (e.g., firewood). Blogs objecting to this APHIS is now focused on applying classical biocontrol. As of September 2020, PPQ and its partners had released ~ 8 million parasitoid wasps in 350 counties in 30 states and Washington, DC (APHIS report; Duan 2021). APHIS reports successful recovery of wasp offspring in 22 states. The agency claims those recoveries demonstrate that the wasps are reproducing, becoming established in the areas where they were released, and most important, attacking and killing the beetles.

Duan (2021) says long-term study sites in Maryland, Michigan, Connecticut, Massachusetts and New York indicate that two of the four introduced biocontrol agents, the larval parasitoids Testrastichus planipennisi and Spathius galinae, have established co-existing populations via niche partitioning on different ash tree size classes. T. planipennis dominates on saplings and small ash trees while S. galinae predominates in pole- and sawtimber-sized trees. Duan says both parasitoids appear to have played a significant role in suppressing EAB populations, although he admits that it is too early to tell if we will see significant improvement in ash recovery and regeneration.

De Andrade (2021) has begun what he hopes will be a range-wide analysis of the impact of the biocontrol effort. He notes that Spathius galinae – although first releases began as recently as 2015 – is showing the best results, possibly because it does attack EAB larvae in larger trees. It will be some years before the efficacy of the program can be determined.

Sudden oak death (SOD)

In its FY2020 annual report (citation at end of blog), APHIS notes that the disease sudden oak death was confirmed as present in a 16th California county (Del Norte) that year. This detection thus connects quarantined areas from south of San Francisco to the one county in southwest Oregon (Curry County) where the disease is wreaking havoc.

The report notes that the causal pathogen, Phytophthora ramorum, can be moved through nursery stock. APHIS took its most important recent action regarding nursery transmission in FY2019, when it relaxed regulatory requirements. In May 2019 – during FY 2020 — a large “spill” of the pathogen on nursery stock from West Coast nurseries resulted in possibly infected plants being shipped to 18 states. The FY2020 report says nothing about this event. Instead, APHIS reports that in FY 2020, 25 nurseries participated in the interstate regulatory program and the agency released two from strict post-infection regulation. PPQ also supports annual surveys, with 23 states participating.

rhododendron seized in 2019 because it was infected by SOD; photo by Indiana Department of Natural Resources

In 2021 there was an even larger incident of infected plants being shipped to nurseries. We’ll see if APHIS includes this failure in next year’s Annual Report.

Asian gypsy moth (AGM)

The several species of Lymatria native to Asia are considered to pose a serious threat to North American forests. Tussock moths in East Asia have a much wider host range than the European Lymantria dispar dispar established in eastern North America. In many cases, the females fly – a behavior which would undermine the control measures applied in the East. Finally, beginning in the early 1990s, new trade patterns created opportunities for these moths to reach North America.

Several leaders of the U.S. and Canadian efforts to prevent their establishment have just published a fascinating history of how the prevention program targetting East Asian tussock moths was adopted (Mastro et al. 2021). The history notes that the first detections of AGM in the Pacific Northwest and British Columbia in the early 1990s posed several challenges to the phytosanitary agencies. These challenges were:

  1. how to justify under international trade rules regulating insects belonging to what was then thought  to be the broad species Lymatria dispar. That species had been established (ever more widely) in eastern North America since 1869. While this crisis arose before adoption of the World Trade Organization, its Agreement on the Application of Sanitary and Phytosanitary Standards, and the new language of the International Plant Protection Organization, the U.S. negotiating position was that it should be “against the rules” to regulate new introductions of established pests. For a thorough discussion of these issues, go to Fading Forests II.
  2. how to manage introductions via ships rather than the plant-origin commodities that they usually regulate.

The threat prodded the agencies to overcome these obstacles – a welcome exercise of initiative! Within a few years, APHIS and its Canadian counterpart (Canadian Food Inspection Service) developed a multi-layered monitoring and inspection program that was applied first to Russia and later to Japan, Korea, and China. Adoption of regulations was assisted by a simultaneous determination by scientists that the tussock moths of Asia actually belong to several species, including but not limited to L. dispar asiatica and L. dispar japonica. I blogged about recent successes and failures of this program and about a recent analysis of additional related species that also should probably be regulated.

Asian gypsy moths on a ship in Nakhodka harbor; USDA photo

Mastro et al. (2021) report that AGM incursions in the U.S. have been discovered on 62 occasions between 1991 and 2019. These have resulted in expensive projects which have – so far – prevented establishment of AGM. These efforts are expensive for both APHIS and the states. APHIS has also funded intensive surveillance efforts, including under the Plant Pest and Disease Management and Disaster Prevention Program (Section 7721). In Fiscal Years 2018 through 2020, APHIS funded surveillance of “Asian defoliators” at more than $1 million each year.

APHIS ANNUAL REPORT FOR FY2020

In its most recent annual report (Helping U.S. Agriculture Thrive— Across the Country and Around the World Plant Protection and Quarantine: Fiscal Year 2020), APHIS provides some of the data on pests cited above. In addition, it reports the number of inspections conducted; pests intercepted and identified; and other agency activities.

Notably, APHIS claims credit for negotiating the agricultural components of the U.S.-China Phase One Economic and Trade Agreement (adopted in May 2020). APHIS says this agreement was the culmination of 20 years effort — and helped open the Chinese market to almost $1 billion annually in sales of U.S. agricultural commodities. When the agreement was announced, I blogged about my frustration that APHIS did not use take this opportunity to press the Chinese to ensure that their wood packaging is pest-free. Chinese wood packaging violates U.S. import rules more often than any other country and U.S. forests need not pay the price. [or something like that.]

As I noted above, the APHIS report makes no mention of the huge “spill” of the sudden oak death pathogen through the nursery trade in 2019 (FY2020). How can APHIS justify this omission? 

SOURCES

Augustinus, B. Optimizing surveillance for priority and other quarantine forest pests in Switzerland. IUFRO Prague September 20 – 24, 2021

De Andrade, R. Emerald Ash Borer biocontrol in US IUFRO Prague September 20 – 24, 2021/

Duan, J. USDA Agriculture Research Service, Newark, DE in USDA document substituting for the 2022 USDA Forest Pest conference (“Annapolis”)”

Mastro, V.C., A.S. Munson, B. Wang, T. Freyman, & L.M. Humble. 2021. History of the Asian Lymantria species Program: A Unique Pathway Risk Mitigation Strategy. Journal of Integrated Pest Management, (2021) 12(1): 31; 1–10

Porth, Ilga. Universite Laval. Next-generation-sequencing-based biosurveillance for Anoplophora glabripennis IUFRO Prague September 20 – 24, 2021

Shoda-Kagaya, E. Current status of three invasive cerambycid pests in Japan. IUFRO Prague September 20 – 24, 2021

Trotter, R.T. USDA Forest Service, Hamden, CT in USDA document substituting for the 2022 USDA Forest Pest conference (“Annapolis”)

USDA APHIS PPQ Annual Report FY2020 Helping U.S. Ag Thrive— Across the Country and Around the World. Plant Protection and Quarantine: Fiscal Year 2020

Volkovitsh, M.G.; Bienkowski, A.O.; Orlova-Bienkowskaja, M.J. 2021. Emerald Ash Borer Approaches the Borders of the European Union and Kazakhstan and Is Confirmed to Infest European Ash. Forests

2021, 12, 691. https:// doi.org/10.3390/f12060691

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm