One State’s Program Illustrates Importance of Federal Funding

Dead ash along Mattawoman Creek in 2019; Mattawoman Creek is a Maryland tributary of the Potomac River, hence of the Chesapeake Bay. Photo courtesy of Leslie A. Brice

In this blog I describe one state’s forest health efforts – Virginia. The pertinent lesson is the importance of external funding, especially that provided by USFS Forest Health Protection program, in supporting states’ efforts. Is your state’s forest health program as dependent upon federal funding as Virginia’s is? If so, there is a role for everyone: lobby your Congressional representative and senators to increase funding for this program!

I have based most of this blog on the Virginia Department of Forestry’s annual report for 2022.

Forests grow on more than 16 million acres in Virginia, or 62% of the Commonwealth’s land area. Eighty percent of these forests are hardwood or hardwood-pine. They break down as follows: 61% oak-hickory; 11% oak-pine; 5% bottomland hardwood; and 2% maple-beech-birch. A fifth of the forest is pine, composed of pine plantation (14%) and natural pine (7%). The long term trend is growth, especially among hardwoods.

The report devotes much of its attention to the agency’s programs to advise private landowners (individuals own 80% of the Commonwealth’s forestland); fire management (including prescribed burns); and state and federal conservation programs (e.g., easements). A major program shares reforestation costs on harvested pine lands. In 2022, this program assisted reforestation practices on 74,702 acres. Virginia has an impressive tree-raising program. VDOF grows more than 40 species, including longleaf and shortleaf pine, several spruce species, and dozens of hardwoods. The aim is to provide stock suited for the Commonwealth’s soils and climate. Many of the hardwood species are grown from acorns and seeds collected and donated by volunteers.

VDOF also helps to protect and improve the Commonwealth’s water quality through tree planting and sound forest management. VDOF has an unusual responsibility: enforcing the Virginia Silvicultural Water Quality Law.

The report also summarizes several urban and community forestry programs focused on education, community engagement, tree selection, and grants for tree planting to ensure canopy retention & management.

Forest Health – Importance of Federal Funding

Spongy Moth

Slightly over 1 million acres was mapped by aerial surveys in FY22. I believe the funding for these surveys came largely from the USFS. The surveys detected heavy to moderate defoliation by the spongy moth on 24,493 acres (almost twice the area detected in FY21). The spongy moth infestation is primarily in counties on the western side of the state, in the mountainous region, which has the highest densities of oaks and other hardwoods.

Spotted Lanternfly

The spotted lanternfly (SLF) was detected in Virginia early – in 2018 in Winchester at the northern end of the Shenandoah Valley. Winchester is connected to central Pennsylvania by Interstate 81, so rapid movement of SLF to Virginia from outbreaks slightly to the east of I-81 in Pennsylvania doesn’t surprise me. SLF has been spreading south along the mountains and over the Blue Ridge to Loudoun and Fairfax counties (in 2022). Fairfax County has announced a four-year, $200,000 effort to try to slow SLF spread by eradicating high densities of its preferred host, Ailanthus, from two county parks in the far south and north ends of the county. Ailanthus removal requires not just cutting the trees, but applying herbicide to prevent sprouting from the roots. This work is funded by the county, the local park authority and a $20,000 grant from the regional energy company, Dominion Energy Charitable Foundation.

Emerald Ash Borer

Virginia has six species of ash: white and green (both common), and smaller populations of black, blue, pumpkin and Carolina. EAB is now confirmed in 84 counties – most of the Commonwealth except the far southeast. The Department of Forestry treats 130 – 150 trees per year – half or more on state lands. At least in FY21, the funding came from federal sources. The report also notes outreach efforts at two minor league baseball games. Virginia recently adopted a priority of protecting the Chesapeake Bay watershed by promoting tree planting in riparian forest buffers. The EAB threatens this goal; see the photo (at top) of ash mortality along a Maryland tributary of the Bay. In 2021, EAB was detected in Gloucester County – a peninsula east of the York River that has Bay shoreline on the eastern side, tributary on the west (see photo).

Gloucester Point – Virginia Institute of Marine Sciences “living shoreline”; EAB was detected in Gloucester County in 2021, threatening riparian areas. Photo courtesy of the Chesapeake Bay Program

Threats to Beech

Beech bark disease is present in the western mountainous parts of the Commonwealth. One new county – Augusta – was detected in 2022. Three other counties are infested with the scale, but the fungal pathogen has not yet been detected. The alarming new threat, beech leaf disease, was detected in Prince William County in 2021. In 2022, it was confirmed in neighboring Fairfax County. The source of funding is not specified.

beech in a typical northern Virginia second-growth forest; photo by F.T. Campbell

Laurel Wilt Disease

Sassafras; photo by David Moynihan

I am pleased that the Commonwealth is paying attention to laurel wilt disease, which has been spreading north on sassafras. The closest outbreaks are in Tennessee, to the southwest of Virginia. The Commonwealth hosted a detection training program attend by 26 participants from six agencies from three states. The report does not specify the source of the funding.

Southern Pine Beetle

Virginia has also utilized funding from the USFS FHP program to manage the southern pine beetle. Since the program’s inception in 2004, Virginia has thinned pines on more than 70,000 acres, including 4,240 acres in FY22.

Invasive Plants

USFS FHP invasive species grants funded control treatments of invasive plants on somewhat less than 1,300 acres of state lands. Different figures on different pages of the report cause confusion. However, it is clear that nearly all the funds came from the USFS FHP program. Ailanthus was the main target; other species mentioned are privet, mimosa, autumn olive and Miscanthus.

State Funding of Conservation Initiatives; Will They Continue?

While the state’s government was controlled by Democrats, the governor and state legislature launched new programs with broader conservation goals. It is unclear whether they will continue now that Republicans have won the governorship and control of the House of Delegates.

Among the programs enjoying increased funding from the state budget during the current two-year cycle are

  • Efforts to restore depleted populations of two groups of tree taxa, shortleaf and longleaf pines. The emphasis has shifted to longleaf pine: the number of projects and acreages rose from 220 acres in FY21 to 1,212 acres in FY22. Restoration of shortleaf pine forests was limited to slightly over 600 acres in both years.
  • Programs to improve management of hardwood stands. These projects included crop tree release, control of “invasive species” (I think probably targetting invasive plants), prescribed burning and commercial thinning. There were also several demonstration projects on state-owned lands, a small land-owner planning assistance program, and training of state foresters and private consulting foresters in hardwood management. Apparently these aspects had been largely ignored in the past.
  • Creation of a dedicated Watershed program focused on increasing riparian forest buffers. This section of the report does not mention the threat posed by loss of ash to the emerald ash borer (EAB) [see EAB section above]
  • Urban forestry projects, many linked to protecting surface and ground water (including Chesapeake Bay watershed).

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

see also the article about beech leaf disease in the mid-Atlantic region written by Gabe Popkin; posted here

Imports from China down slightly, but high pest risk continues

I have blogged often about the pest risk of wood packaging associated with imports from Asia – especially China – and the shift in that risk arising from import volumes and ports at which they are arriving (increasing volumes entering country at ports along Atlantic and Gulf coasts). [See blogs posted on this site, under the “wood packaging” category (listed below the archives by date).] As noted, U.S. imports from Asia are at all-time highs: in the first three months of 2022, they reached 1.62 million TEU (shipping containers measured as twenty-foot equivalents). This was 31.1% higher than in the same period in pre-pandemic 2019 (Mogelluzzo, B. April 22, 2022).

The most recent information (Szakonyi, M. 2023) confirms that U.S. importers are shifting suppliers to countries other than China, primarily because of lengthy shutdowns in Chinese factories linked to the “0 COVID” policy and some U.S. restrictions and tariffs. Over 2022 (full year), China – including Hong Kong – supplied 40.7% of U.S. imports. This is still a huge proportion, but lower than in 2021, when it was 42.4%. The Journal of Commerce calculates that the number of containers coming from China fell by 435,000. At the current rate of infestation in wood packaging from China calculated by Haack et al. 2022, that might mean about 1,200 fewer containers from China with infested wood packaging entering the U.S.

[Explanation of calculations: I divided 435,000 by 2 to convert 20-ft TEU into 40-ft containers that CBP encounters at the ports; multiplied the result by 0.75 – based on the decade-old Meissner estimate of % of containers that have SWPM; then multiplied the result by .0073 because that is infestation rate for China during 2010-2020 period]

This might be progress. China continues to have a terrible record of non-compliant wood packaging 23 years after U.S. and Canada instituted phytosanitary requirements. According to Haack et al. (2022), packaging from China made up 4.6% of all shipments inspected under the terms of their analysis, but 22% of the 180 consignments with infested wood packaging. Thus the proportion of Chinese consignments with infested wood is five times greater than expected based on their proportion of the dataset. The rate of wood packaging from China that is infested has remained relatively steady = 1.26% during 2003–2004, 0.73% during 2010 – 2020. And the insects present belong to the group that causes the greatest damage: longhorned beetles (Cerambycids). Indeed, 78% of beetles in this family that were detected were from China.

There is some good news: some types of goods likely to be enclosed in crates have decreased notably. The proportion of furniture and other home items imported from China has declined from 71.6% of all U.S. imports in 2010 to 52.6% in 2022. As Haack et al. (2022) found, crates are the type of wood packaging where wood pests are most commonly found. While crates constituted only 7.5% of the wood packaging inspected, they made up 29.4% of the infested packaging – or four times greater than their proportion of the dataset.

The pest risk might not be changing significantly, however, because some of the new suppliers are also in Asia. Vietnam’s share of U.S. imports rose from 8.2% to 8.7%. The types of goods most often imported from Vietnam included electronics, shoes, and apparel. The U.S. has already been invaded by insect-pathogen complexes native to Vietnam, Taiwan, and other parts of southeast Asia – e.g., redbay ambrosia beetle and laurel wilt; invasive shot hole borers and Fusarium disease.

U.S. imports from South Korea, mostly electronics and autoparts, climbed from 3.8% to 4.1%. Imports from India also saw a tiny increase – from 3.8% to 3.9%. These shipments were primarily apparel and iron and steel components. These goods prompt concern because wood packaging associated with heavy materials are often infested by insects (Eyre et al. 2018). The Haack et al. (2022) analysis found two interceptions of wood packaging from Vietnam, one from Korea, and three from India.

Besides, the Journal of Commerce notes that shifts in suppliers cannot go far. These countries’ manufacturing capacity and transportation infrastructure are far below those of China (Szakonyi, M. 2023).

In February 2023, U.S. imports from Asia continued to decline from record levels in 2021 and 2022 to 1.09 million TEU. This level still exceeds by 25% the 869,091 TEU recorded in March 2020, at the beginning of the COVID-19 shutdown (Mongelluzzo, March 17, 2023).

[Reminder: higher shares of imports from Asia are going to ports along the Atlantic and Gulf coasts – spreading the risk. See earlier blogs. In early March the Port of Savannah posted an advertisement to the on-line Journal of Commerce, crowing that by July it will complete straightening the river at the Garden City Terminal (the container terminal). This fix will enable Savannah to raise its annual container processing capacity by 1.5 million TEU, to 7.5 million.]

The most hopeful finding is that imports from Mexico jumped 19.2% in the first 11 months of 2022 compared to the same period in 2021. Importers have their reasons: a desire to buy from producers closer to the U.S. market. These motivations have nothing to do with the risk of forest pest introductions. However, we can rejoice because Mexico has greatly improved the pest-infestation rates of its exports since 2009. The rate fell from 0.29% in 2003-2004 to 0.04% in 2010-2020 (Haack et al. (2022).  

larval Asian longhorned beetle; Thomas Denholm, NJ Department of Agriculture; Bugwood

I remain outraged that U.S. agencies have not taken effective steps to deal with the nearly 25-year-long problem of Chinese noncompliance with our phytosanitary requirements. As I noted in my previous blog, link to blog 303 Customs and Border Protection officials are disappointed that their enhanced enforcement in 2017 and 2021 has not yet resulted in improved compliance.

I suggested that the U.S. and Canadian government agencies should penalize trade partners with high records of not complying with ISPM#15. Among steps they should consider are

  • U.S. and Canada should refuse to accept wood packaging from foreign suppliers that have a record of repeated violations – whatever the apparent cause of the non-compliance. Institute severe penalties to deter foreign suppliers from taking devious steps to escape being associated with their violation record.
  • APHIS and CBP and their Canadian counterparts should provide guidance to importers on which foreign treatment facilities have a record of poor compliance or suspected fraud – so they can avoid purchasing SWPM from them. I greatly regret that the death of Gary Lovett might put an end to the voluntary industry program he had been developing, described here.
  • Encourage a rapid switch to materials that don’t transport wood-borers. Plastic is one such material. While no one wants to encourage production of more plastic, the Earth is drowning under discarded plastic. Some firms are recycling plastic waste into pallets.

Haack et al. 2022 fully describes the methodology used, the structure of USDA’s Agriculture Quarantine Inspection Monitoring (AQIM) program, detailed requirements of ISPM#15, the phases of U.S. implementation, etc.  Also see the supplemental data sheet in Haack et al. (2022) that compares the methods used in each analysis.

SOURCES

Eyre, D., Macarthur, R., Haack, R.A., Lu, Y. and Krehan, H., 2018. Variation in inspection efficacy by member states of wood packaging material entering the European Union. Journal of Economic Entomology, 111(2), pp.707-715.

Haack RA, Hardin JA, Caton BP and Petrice TR (2022) Wood borer detection rates on wood packaging materials entering the United States during different phases of ISPM#15 implementation and regulatory changes. Frontiers in Forests and Global Change 5:1069117. doi: 10.3389/ffgc.2022.1069117

Meissner, H., A. Lemay, C. Bertone, K. Schwartzburg, L. Ferguson, L. Newton. 2009. Evaluation of Pathways for Exotic Plant Pest Movement into and within the Greater Caribbean Region. A slightly different version of this report is posted at 45th Annual Meeting of the Caribbean Food Crops Society https://econpapers.repec.org/paper/agscfcs09/256354.htm

Mongelluzzo, B. Q1 US imports from Asia show no slowing in consumer demand. Apr 22, 2022. https://www.joc.com/maritime-news/container-lines/q1-us-imports-asia-show-no-slowing-consumer-demand_20220422.html

Mongelluzzo, B. US imports from Asia hit three-year low in February: data. https://www.joc.com/article/us-imports-asia-hit-three-year-low-february-data_20230317.html

Szakonyi, M. 2023. Sourcing shift from China pulls US import share to more than a decade low. https://www.joc.com/article/sourcing-shift-china-pulls-us-import-share-more-decade-low_20230201.html

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Elm zigzag sawfly invades Eastern U.S.

The characteristic zigzag pattern Picture: Kelly Oten, NC State University.

Guest blog by Kelly Oten, NC State University

The elm zigzag sawfly [EZS; Aproceros leucopoda Takeuchi (Hymenoptera: Argidae)] is the newest invasive forest insect detected in the eastern US. The colloquially-used common name, currently going through the ESA common name approval process, is not only catchy, but perfectly describes this defoliator’s unique feeding damage. As EZS feeds on elm leaves, it weaves a zigzag pattern from the margin of the leaf towards the mid-vein.

An Expansive — and Quickly Growing – Range

Native to East Asia, the first confirmation of EZS in North America occurred in August 2020 in Québec, Canada when an iNaturalist user posted a photo showing the characteristic zigzag defoliation. The observer realized it was potentially EZS and emailed local entomologists in the province who visited the site, collected specimens, and obtained species confirmation through the Canadian Food Inspection Agency Entomology Lab (Martel et al. 2021). However, this detection was not actually the beginning.

Three months before the Canadian detection, the same defoliation pattern was observed in Frederick County, Virginia, USA. Observers suspected EZS, but no specimens were recovered and therefore identification could not be confirmed. A year later, the site was revisited and this time, bingo—specimens were present and confirmed as EZS. Subsequent surveys that summer led to detections in eight additional Virginia counties. At the same time, the telltale defoliation was observed in Lehigh County, Pennsylvania, USA, but no specimen could be recovered for confirmation. In 2022, EZS popped up more widely; four additional states confirmed EZS: Pennsylvania, North Carolina, Maryland, and New York.

map created by Kelly Oten, NCSU

Though new to North America, this insect has a history of invasiveness. First detected in Europe in 2003, it now occupies areas from the United Kingdom and France in the west, to Russia and Kazakhstan in the east (Ashikbayev et al. 2018, iNaturalist 2022).

The strange and unusual biology of elm zigzag sawfly

Like all Hymenopterans, EZS goes through four life stages: egg, larva, pupa, adult. Eggs are laid along leaf margins; after hatching, larvae feed on leaf foliage in a zigzag pattern towards the mid-vein. Older larvae consume the leaf more entirely, leaving behind the mid-vein and thicker lateral veins only. Before pupating, larvae spin a cocoon within which they pupate. Cocoons are seasonally dimorphic; summer pupae (which emerge as adults in 4-7 days) are net-like and attached to leaves or twigs. Overwintering pupae are solid-walled and found in leaf litter or soil. Interestingly, overwintering pupae are not just produced from the last generation of the year. Even early in the summer, overwintering pupae may develop alongside summer pupae. Adults are able to begin oviposition immediately; not only do they not need to feed, but they don’t need to find a mate either! EZS is parthenogenetic, meaning they reproduce without mating. In fact, no male EZS has ever been recorded and it’s believed the species is entirely female.

As elm zigzag sawfly larvae (bottom left on leaf) grow, they feed more wholly on elm leaves. Picture: Kelly Oten, NCSU

The entirety of this life cycle can last ~20-36 days when not overwintering. However, the voltinism of this pest is highly variable. Papp et al. (2018) recorded up to seven generations in a year on lab-reared colonies, but in nature in Europe, anywhere between two and six generations has been recorded (Blank et al. 2010, Mol and Vonk 2015). In Virginia, two generations were recorded in 2021 and 1 in 2022. It is unknown what factors play into the number of generations per year, but it’s clear that it’s highly variable. The ability of EZS to multiply rapidly and have multiple generations per year suggest large populations can build in a relatively short time. In fact, this was observed in North Carolina in 2022 and in Europe several times before. Large populations are capable of severe defoliation and may cause long-term impacts on tree health.

This collective life cycle description is based on Blank et al. 2010, Martel et al. 2021, Martynov and Nikulina 2017, and Wu 2006.

Spread

EZS has astonished many with how it seems to be popping up all over the place in such a short amount of time. Since 2020, it has been detected in five US states and at several sites along the St. Laurence River in the Canadian province. The adults are strong fliers, capable of spreading 45-90 km (~27-55 mi) per year (Blank et al. 2014). Given the fact they’re parthenogenetic, relatively small numbers can disperse to begin new populations. Of perhaps greater concern is the potential for long-range dispersal. In heavy infestations in North Carolina, cocoons were found not just attached to leaves and stems, but also non-living objects, suggesting a possible mechanism of long-range dispersal should they become attached to vehicles or other objects transported long distances. In addition, EZS damage ranges from minor to severe defoliation. When populations are low and feeding is minor, it’s less likely to be detected unless intentional surveys are conducted. This cryptic nature might suggest it’s in more places than we are currently aware.

An elm zigzag sawfly cocoon attached to a fence post.
Picture: Kelly Oten, NCSU

So, what’s the big deal?

In short, we don’t know yet. Generally speaking, defoliation by insects causes little long-term harm to tree health but severe and/or repeated defoliation can weaken or sometimes kill a host. In Europe, trees severely defoliated by EZS are typically able to re-leaf but may suffer branch dieback and/or reduced growth (Blank et al. 2010, Zandigiacomo et al. 2011). Also of note, EZS is attacking elm, an already-threatened tree due to widespread mortality cause by Dutch elm disease in the 1900s. Defoliation by EZS could further weaken infected trees or, at the very least, present an additional threat for remaining elms (Blank et al. 2010). While it seems aesthetic damage will be the primary concern with EZS, the potential for long-term tree health impactsin the US is uncertain and should be investigated. For now, anyone that finds EZS or its characteristic defoliation pattern are encouraged to report it to their respective state agriculture or forestry agency.

A row of winged elm (Ulmus alata) in NC were severely defoliated by elm zigzag sawfly.
Picture: Kelly Oten, NCSU

[See Faith’s earlier blog about the zigzag sawfly here.]

References

Ashikbayev, N. Z., N. S. Mukhamadiyev, G. Z. Mengdibayeva, M. B. Temirzhanov, and N. K. Kuanyshbaev. 2018. Development of forest entomology in Kazakhstan, pp. 42–47.  In T. I. Espolov, K. M. Tireuov, E. I. Islamov, S. B. Baizakov, K. T. Abayeva, E. Z. Kentbaev, and B. A. Kentbaeva (eds.), Actual problems of sustainable development in forestry complex, vol. 2. Aitumar Publishing, Almaty, Kazakhstan.

Blank, S. M., H. Hara, J. Mikulás, G. Csóka, C. Ciornei, R. Constantineanu, I. Constantineanu, L. Roller, E. Altenhofer, T. Huflejt, and G. Vétek. 2010. Aprocerosleucopoda (Hymenoptera, Argidae): an East Asian pest of elms (Ulmus spp.) invading Europe. Eur. J. Entomol. 107: 357–367.

Blank, S. M., T. Köhler, T. Pfannenstill, N. Neuenfeldt, B. Zimmer, E. Jansen, A. Taeger, A.D. Liston. 2014. Zig-zagging across Central Europe: recent range extension, dispersal seed and larval hosts of Aprocerosleucopoda (Hymenoptera, Argidae) in Germany. J. Hymenopt. Res. 41: 57-74.

iNaturalist. Available from https://www.inaturalist.org. Accessed August 2022.

Martel, V., O. Morin, S. Monckton, C. Eiseman, C. Béliveau, M. Cusson, and S. Blank. 2021. Elm zigzag sawfly, Aproceros leucopoda (Hymenoptera: Argidae), recorded for the first time in North America through community science. Can. Entomol. 154: E1.

Martynoz, V. V., and T. V. Nikulina. 2017. Population surge of zigzag elm sawfly (Aproceros leucopoda (Takeuchi, 1939): Hymenoptera: Argidae) in the Northern Ciz-Azov Region. Russ. J. Biol. Invasions 8: 25-34.

Mol, A. W. M., and D. H. Vonk. 2015. De iepenzigzagbladwesp Aproceros leucopoda (Hymenoptera: Argidae), een invasieve exoot in Nederland. Entomol. Ber. 75: 50-63.

Papp, V., M. Ladányi, and G. Vétek. 2018. Temperature-dependent development of Aproceros leucopoda (Hymenoptera: Argidae), an invasive pest of elms in Europe. J. Appl. Entomol. 142: 589-597.

Wu, X. Y. 2006. Studies on the biology and control of Aproceros leucopoda. Plant Prot. 32: 98-100.

Zandigiacomo, P., E. Cargnus, and A. Villani. 2011. First record of the invasive sawfly Aproceros leucopoda infesting elms in Italy. Bull. Insectology 64: 145-149.