Funding of tree pest programs through §7721

spotted lanternfly – target of many projects funded by USDA’s Plant Pest & Disease Management & Disaster Prevention Program; photo by Holly Raguza of Pennsylvania Department of Agriculture

I am belatedly reporting on the forest-pest projects funded by annual grants under the Plant Pest & Disease Management & Disaster Prevention Program ( of the Plant Protection Act). As usual, APHIS funded projects totaling $62.975 million in FY24. In total, 353 projects were funded. These projects represented 70% of the 504 project proposals submitted (the total funding sought was $106 M).  

APHIS reserved $11 million for responding to P&P emergencies. I applaud this choice since the agency’s annual appropriation provides only a completely inadequate $1 million (or less) to cover emergencies.

APHIS notes that since initiation of the Plant Pest & Disease Management & Disaster Prevention Program in 2009, it has funded more than 5,500 projects with a total of nearly $870 million.

In FY24 the program funded 30 more projects than the 322 projects funded in FY23. blog 320 The FY24 allocation provides more than $1 million more for goal area 1S — Enhance Plant Pest/Disease Survey (from $14.4 million to $15.7 million). This was balanced by small decreases for the other goal areas: enhancing mitigation capabilities received $13.6 million; inspections at domestic sites important in invasive species’ spread received $6.3 million; pest identification and detection received $5.3 million; and outreach and education received $4.1 million.  Projects safeguarding nursery production and those improving pest and disease analysis each received about $2 million.

By my calculation – subject to error! – about $7.5 million went to projects clearly dealing with forest pests [12% of total funding]. This is a welcome increase from FY23 – when funding of such projects reached about $6.5 million (a little over 10%). blog 320 Funding for tree pest projects might be higher. Some $1.9 million is allocated to surveys of grapevines and orchards — hosts of the spotted lanternfly (SLF). However, it is not clear whether these projects are focused on detecting and managing SLF; they might have a much broader goal. If we do include these projects, the total for tree-killing pests rises to $9.4 million — nearly 15% of the total.

Over both FY23 and FY24, the majority of funds went to similar topics: survey and management of sudden oak death in nurseries; surveys for bark beetles, Asian defoliators, and forest pests generally; and outreach programs targetting the spotted lanternfly. In FY24, just under $100,000 paid for efforts to develop tools for rapid detection of laurel wilt link to DMF in avocados – that is, in a crop rather than the natural environment.

No projects addressing tree or forest pests were funded in seven states or territories: Guam, Idaho, Nebraska, New Mexico, Rhode Island, South Dakota, and Utah. This was three fewer states than in FY23. In neither year do I know whether these states submitted proposals in this category that ended up not being funded.

In FY24, spotted lanternfly is by far the pest addressed by the most projects. As noted above, I can’t be precise about the number because of the lack of information about the 23 projects that fund pest surveys of grapes and/or tree crops that are SLF hosts. Eleven projects named SLF specifically. A final project (not included in above) is one funding registration of Verticillium nonalfalfae as a biocontrol for Ailanthus altissima – an invasive tree that is the preferred host of SLF.

The District of Columbia, Kansas, Missouri, and Oklahoma each had one tree pest project funded. In the cases of Kansas and Missouri, the single project was surveys for thousand cankers disease of walnut. Three other states — Iowa, Maryland, and Pennsylvania — also obtained funding to survey for TCD.

The single Oklahoma project concerned efforts to ensure that the sudden oak death pathogen(Phytopthora ramorum) is not present in nurseries. (An Oklahoma wholesaler was one of the hubs of this pathogen’s spread to 18 states in 2019). Eleven other states were also funded to survey their nurseries for P. ramorum: Alabama, Kentucky, Louisiana, Nevada, North Carolina, Ohio, Pennsylvania, South Carolina, Virginia, and West Virginia. P. ramorum is a “program pest” in 2024. That is, APHIS had designated it as a regulated pest for which the agency wished to fill knowledge gaps about its distribution. I note that last year APHIS published a risk assessment that downplayed the likelihood that P. ramorum would establish in the eastern states. Is APHIS seeking more information to test this conclusion?

In a separate case, Oregon received $76,000 to evaluating the threat to nurseries and forests arising from the presence in the state’s forests of two strains or lineages of P. ramorum that previously had not been extant in the environment of North America.

Another approximately 53 projects fund surveys for tree pests other than spotted lanternfly; these are often fairly general surveys, such as for woodborers or “Asian defoliators”. About ten projects fund management efforts – including evaluation of the efficacy of emerald ash borer biocontrol programs.

Last year I noted that two states – Mississippi and Nevada — had projects to survey the “palm commodity”. Hawai`i joined this group in FY24. The project descriptions don’t specify which pests are the targets. The South American palm weevil (Rhynchophorus palmarum) seems most probable; it is established in far southern California and neighboring Mexico. APHIS prepared a risk assessment on the species in 2012. link? In Hawa`ii, concern probably focuses on the coconut rhinoceros beetle (Oryctes rhinoceros). link? There are other threats to palms, e.g., the red palm weevil (Rhynochophorus ferrugineus), link? and a deadly Fusarium wilt. link?

native palms in the desert at Anza-Borrego, California; photo by F.T. Campbell

California has native palms (Washingtonia filifera); southern states from Texas to at least South Carolina have native palmettos. Of course, many species of palms are important ornamental plants in these states, and dates are raised commercially.

Another “program pest” that I have blogged about in the past is box tree moth. link to blog 287 In FY24 five projects addressed this pest, including surveys and efforts to develop better control tools.

beavertail cactus (Opuntia basilaris) in Anza-Borrego, California; photo by F.T. Campbell

I am pleased by continued funding of projects trying to utilize biocontrol agents to protect two groups of cactus severely threatened by non-native insects: lepidoptera that attack flat-padded prickly pear cacti (Opuntia spp.) link to DMF and the mealybug that attacks columnar cacti of Puerto Rico and the Virgin Islands. link to DMF

vulnerable cactus on St. John, US Virgin Islands; photo by F.T. Campbell

I applaud the decision to fund projects focused on determining the efficacy of biocontrol projects. As noted above, three projects are asking these questions in the case of the emerald ash borer. link to DMF  Another project funds production, release, and efficacy evaluation of biocontrol agents targetting Brazilian peppertree in Florida & Texas.

I am also pleased that three projects assist Washington State in its efforts to eradicate the invasion by giant hornets from Asia. link to blogs & Hornet Herald – no detections in 2023 … A company in California also received funding to developing hornet detection tools.

Nineteen projects funded outreach efforts, including continued funding for the “Don’t Move Firewood” program. In addition to those focused on spotted lanternfly, such projects also included other firewood programs, Asian longhorned beetle awareness, and the nursery industry.

I note that while California received funding for 27 projects, none dealt with any of several deadly tree pests extant in the state – goldspotted oak borer, polyphagous and Kuroshio shot hole borers, Mediterranean oak borer, and the palm weevils.  Nor did Hawai`i obtain funding to address rapid ohia death.  Did no one submit proposals to address any of the many issues impeding management of these killers?

South American palm weevil; photo by Allan Hopkins via Flickr

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Planting Trees to Sequester Carbon – Beware the Wrong Places!

Greater prairie chicken – denizen of the Tallgrass Prairie; NPS photo

In August 2022 I blogged about unwise planting of trees in New Zealand as a warning about rushing to ramp up tree planting as one solution to climate change.

New Zealand has adopted a major afforestation initiative (“One Billion Trees”). This program is ostensibly governed by a policy of “right tree, right place, right purpose”. However, Bellingham et al. (2022) [full citation at end of blog] say the program will probably increase the already extensive area of radiata pine plantations and thus the likelihood of exacerbated invasion. They say the species’ potential invasiveness and its effects in natural ecosystems need more thorough consideration given that the pines

  • have already invaded several grasslands and shrublands;
  • are altering primary succession;
  • are climatically suitable to three-quarters of New Zealand’s land
North American Tallgrass Prairie; photo by National Park Service

A new study by Moyano et al. [full citation at the end of the blog] tackles head-on the question of whether widespread planting of trees to counter climate change makes sense. They focus on plantings in naturally treeless ecosystems, i.e., grasslands, shrublands and wetlands. They find that:

  • relying on tree planting to significantly counter carbon change in the absence of reducing carbon emissions would require converting more than a third of Earth’s of global grasslands into tree plantations.
  • Reforestation of areas previously forested has the potential to produce a net increase in carbon sequestration more than twice as great as can be done by afforesting unforested areas.

Moyano et al. conclude that conservation and restoration of degraded forests should be prioritized over afforestation projects. This recommendation confirms points made in an earlier blog. Then I reported that Calders et al. (2022) said temperate forests account for ~14% of global forest carbon stocks in their biomass and soil. They worried that ash dieback link will kill enough large trees that European temperate deciduous forests will become a substantial carbon source, rather than sink, in the next decades. In my blog I pointed out that other tree taxa that also formerly grew large – elms, plane trees, and pines – have either already been decimated by non-native insects and pathogens, or face severe threats now.

Moyano et al. also point out that naturally treeless ecosystems are often at risk to a variety of threats, they provide numerous ecosystem services, and they should be conserved.

Loss of Biodiversity

Tree planting in naturally treeless areas changes ecosystems at the landscape scale. Moyano et al. say these changes inevitably degrade the natural biodiversity of the affected area. For example, grasslands provide habitats for numerous plant and animal species and deliver a wide range of ecosystem services, including provisioning of forage for livestock, wild food and medicinal herbs, + recreation and aesthetic value. Already 49% of Earth’s grassland area is degraded. Restoration of herbaceous plant diversity in old growth grasslands requires at least 100 years.

These obvious impacts are not the only losses caused by conversion of treeless areas to planted forests.

Ambiguous Carbon Sequestration Benefits

Grasslands store 34% of the terrestrial carbon stock primarily in the soil. Tree planting in grasslands can result in so much loss of carbon stocks in the soil that it completely offsets the increment in carbon sequestration in tree biomass. The underlying science is complicated so scientists cannot yet predict where afforestation will increase soil carbon and where it will reduce it. Important factors appear to be

  • Humid sites tend to lose less soil carbon loss than drier sites;
  • Soil carbon increases as the plantation ages;
  • Tree species: conifers either reduce soil carbon or have no effect; broadleaf species either increase soil carbon or have no effect.
  • Sites with higher initial soil carbon tend to lose more carbon during afforestation.
  • Afforestation has greater impacts on upper soil layers.

Moyano et al. assert that appropriate management of grasslands can provide low cost, high carbon gains: a potential net carbon sequestration of 0.35 Gt C/ year at a global level, which is comparable to the potential for carbon sequestration of afforestation in all suitable dryland regions (0.40 Gt C/year).

Changes in Albedo

Trees absorb more solar energy than snow, bare soil or other life forms (such as grasses) because they reflect less solar radiation (reduced albedo). Moyano et al. say the resulting warmer air above the trees might initially offset the cooling brought about by increased carbon sequestration in the growing trees’ wood. Only after decades does the increase in carbon sequestration compensate for the reduction in albedo and produce a cooling effect. Furthermore, they say, the eventual cooling effect that afforestation could create is slight, reducing the global temperature only 0.45°C by 2100 if afforestation was carried out across the total area actually covered by crops. As they note, replacing all crops by trees maintained to sequester carbon is highly unlikely.

Eucalyptus-pine plantation burned in Portugal; photo by Paolo Fernandez via Flickr

Increased fire severity

Planting trees in many treeless habitats – deserts, xeric shrublands, and temperate and tropical grasslands – increases fire intensity. This risk is exacerbated when managers choose to plant highly flammable taxa, e.g., Eucalyptus.Already the fire risk is expected to increase due to climate change. These fires not only threaten nearby people’s well-being and infrastructure; they also release large portions of the carbon previously sequestered, thus undermining the purpose of the project. Moyano et al. note that the carbon stored in the soil of grasslands is better protected from fire.

Water supplies reduced

Afforestation changes the hydrological cycle because an increase in carbon assimilation requires an increase in evapotranspiration. The result at the local scale is decreased water yield and increased soil salinization and acidification. Water yield losses are greater when plantations are composed of broadleaf species. Moyano et al. point out that these water losses are more worrying in areas where water is naturally scarce, e.g., the American southwest, including southern California. On the other hand, increased evapotranspiration can enhance rain in neighboring areas through a redistribution of water at the regional scale and increased albedo through the formation of clouds.

Moyano et al. say planting trees also alters nutrient cycles. To my frustration, they don’t discuss this impact further.

Bioinvasion risk

Moyano et al. cite several experts as documenting a higher risk of bioinvasion associated with planting trees in naturally treeless systems. These invasions expose the wider landscapes to the impacts arising from tree plantations, e.g., increased plant biomass carbon sequestration, reduced soil carbon, reduced surface albedo, increased fuel loads and fuel connectivity, reduced water yield, and altered nutrient cycles. Even native ecosystems that are legally protected can be threatened. Thickets of invading trees can exacerbate some of the impacts listed above since the invading trees usually grow at higher densities. On a more positive side, invading stands of trees often are more variable in age; in this case, they can be more like a natural forest than are even-aged stands in plantations. Because of these complexities, the effect of tree invasions on ecosystem carbon storage becomes highly context dependent. This is rarely evaluated by scientists. See  Lugo below.

Moyano et al. say woody plant invasions can exacerbate human health issues by providing habitat for wildlife hosts of important disease vectors, including mosquitoes and ticks. I ask whether plantations using unwisely chosen tree species might raise the same risks. They decry the minimal research conducted on this issue.

Assessing the tradeoffs

The goal is to remove CO2 from the atmosphere by fixing more carbon in plant biomass. Moyano et al. say careful consideration of projects’ potential impacts can minimize any negative consequences. An integrated strategy to address climate change should balance multiple ecological goals. Efforts to increase carbon storage should not compromise other key aspects of native ecosystems, such as biodiversity, nutrient and hydrological cycles, and fire regimes. First, they say, planners should avoid the obvious risks:

  • don’t plant fire-prone/flammable tree species; do adopt fuel- and fire-management plans.
  • don’t plant potentially invasive species.
  • don’t plant forests in vulnerable environments where negative impacts are likely.

In order to both minimize that certain risks will arise and ensure counter measures are implemented if they do, Moyano et al. suggest incorporating into carbon certification standards two requirements:

  • that soil carbon be measured throughout the whole soil depth.
  • that plantation owners be legally responsible for managing potential tree invasions.

The authors praise a new law in Chile, which prohibits planting monospecific tree plantations as a natural climate solution.

Furthermore, they advocate for regulators conducting risk analyses rather than accepting groundless assumptions about carbon storage and climate cooling effects.

Recognizing the uncertainty about some effects of introducing trees into naturally treeless areas, and interactions between these effects and the key role of the ecological context, Moyano et al. call for increased study of plant ecology. They specify research on the above-mentioned highly variable impacts on soil carbon as well as albedo.

Role of NIS trees in sequestering /storing carbon in U.S.

According to Lugo et al. (2022; full citation at the end of this blog), in the Continental United States, non-indigenous tree species contribute a tiny fraction of the forests’ carbon storage at the current time:  about 0.05%. This is because non-native trees are widely scattered; while individuals can be found in more than 61% of forested ecosections on the continent, they actually occupy only 2.8% of the forested area.

However, non-native tree species are slowly increasing in both their area and their proportion of species in specific stands. Consequently, they are increasingly important in the forest’s carbon sink – that is, the amount of additional carbon sequestered between two points in time. In fact, non-native trees represent 0.5% of new carbon sequestered each year. This is ten times higher than their overall role in carbon storage. In other words, the invasive species play increasingly important ecosystem roles in the stands in which they occur.

neem tree – considered invasive in the Virgin Islands; photo by Miekks via Wikimedia

On the United States’ Caribbean and Pacific islands, non-native tree species are already much more common, so they are more important in carbon sequestration. On Puerto Rico, 22% of the tree species are non-native; link to blog 340 they accounted for 38% of the live aboveground tree carbon in forests. On the Hawaiian Islands, an estimated 29% of large trees and 63% of saplings or small trees are non-native. link to blog 339 Consequently, they store 39% of the mean plot area-weighted live aboveground tree carbon.

SOURCES

Bellingham, P.J., E.A. Arnst, B.D. Clarkson, T.R. Etherington, L.J. Forester, W.B. Shaw,  R. Sprague, S.K. Wiser, and D.A. Peltzer. 2022. The right tree in the right place? A major economic tree species poses major ecological threats. Biol Invasions Vol.: (0123456789) https://doi.org/10.1007/s10530-022-02892-6  

Calders, K., H. Verbeeck, A. Burt, N. Origo, J. Nightingale, Y. Malhi, P. Wilkes, P. Raumonen, R.G.H. Bunce, M. Disney.  Laser scanning reveals potential underestimation of biomass carbon in temperate forest. Ecol Solut Evid. 2022;3:e12197. wileyonlinelibrary.com/journal/eso3  

Lugo, A.E., J.E. Smith, K.M. Potter, H. Marcano Vega, and C.M. Kurtz. 2022. The Contribution of NIS Tree Species to the Structure and Composition of Forests in the Conterminous US in Comparison with Tropical Islands in the Pacific and Caribbean. USFS International Institute of Tropical Forestr. January 2022. General Technical Report IITF-54 https://doi.org/10.2737/IITF-GTR-54

Moyano, J., R.D. Dimarco, J. Paritsis, T. Peterson, D.A. Peltzer, K.M. Crawford, M.A. McCary,| K.T. Davis, A. Pauchard, and M.A. Nuñez. 2024. Unintended consequences of planting native and NIS trees in treeless ecosystems to mitigate climate change. Journal of Ecology. 2024;00:1-12

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

California bill – model for other states?

invasion of wild/black mustard Brassica nigra; photo by carlbegge via Flickr

A California state legislator has proposed a bill to expand state efforts to counter invasive species. Should we support it – and others like it in other states?

The bill is Assembly Bill 2827 introduced by Assembly Member (and former Majority Leader) Eloise Reyes of the 50th Assembly District. She represents urban parts of southwestern San Bernardino County, including the cities of Rialto, Colton, and Fontana.

According to media reports, Reyes was prompted to act by the current outbreak of exotic fruit flies, which as of some months ago resulted in detections in 15 California counties.

The bill is much broader than agricultural pests, however. It would find and declare that it is a primary goal of the state to prevent the introduction, and suppress the spread, of invasive species within its borders.  I applaud the language of the “findings” section:

(a) Invasive species have the potential to cause extensive damage to California’s natural and working landscapes, native species, agriculture, the public, and economy.

(b) Invasive species can threaten native flora and fauna, disrupt ecosystems, damage critical infrastructure, and result in further loss of biodiversity.

Paragraph (c) cites rising threats associated with increased movement of goods, international travel, and climate change — all said to create conditions that may enhance the survival, reproduction, and spread of these invasive species, posing additional threats to the state.

(d) It is in the best interest of the state to adopt a proactive and coordinated approach to prevent the introduction and spread of invasive species.

California sycamore attacked by invasive shot hole borer; photo by Beatriz Nobua-Behrmann

The bill calls for

  • The state agencies, in collaboration with relevant stakeholders, to develop and implement pertinent strategies to protect the state’s agriculture, environment, and natural resources.
  • The state to invest in research, outreach, and education programs to raise awareness and promote responsible practices among residents, industries, and visitors.
  • State agencies to coordinate efforts with federal, local, and tribal authorities.

However, the bill falls short when it comes to action. Having declared that countering bioinvasion is “a primary goal of the state”, and mandated the above efforts, the bill says only that the California Department of Food and Agriculture (which has responsibility for plant pests) is to allocate funds, if available, to implement and enforce this article. Under this provision, significant action is likely to depend on holding agencies accountable and providing increased funding.

removing coast live oak killed by goldspotted oak borer; photo by F.T. Campbell

Would this proposed legislation make a practical difference? I have often complained that CDFA has not taken action to protect the state’s wonderful flora. For example, CDFA does not regulate firewood to prevent movement of pests within the State. It has not regulated numerous invasive plants or several wood-boring insects. These include the goldspotted oak borer; the polyphagous and Kuroshio shothole borers; and the  Mediterranean oak borer.

On the other hand, CDFA is quick to act against pests that might enter the state from elsewhere in the country, e.g., spongy moth (European or Asian), emerald ash borer and spotted lanternfly.

I hope Californians and the several non-governmental organizations focused on invasive species will lobby the legislature to adopt Assembly Bill 2827. I hope further that they will try to identify and secure a source of funds to support the mandated action by CDFA and other agencies responsible for managing the fauna, flora, and other taxa to which invasive species belong.

I applaud Ms. Reyes’ initiative. I hope legislators in other states will consider proposing similar bills.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org