Non-Native Moths in England: Ever Upward

Platyperigea kadenii — one of the moth species that feeds on native plant species introduced recently to Great Britain. Photo by Tony Morris via Flickr

Will phytosanitary agencies and the international system respond to continuing introductions of non-native species?

A new study confirms that introductions of insects continue apace, links this pattern to the horticultural trade, and examines the role of climate change in facilitating introductions. This study focuses on moths introduced to the United Kingdom (Hordley et al.; full citation at the end of the blog). The study sought to detect any trends in numbers of species establishing and the relative importance of natural dispersal vs. those assisted – intentionally or inadvertently – by human activities.

The authors determined that moths continue to be introduced by both processes; there is no sign of “saturation”. This finding agrees with that of Seebens and 44 others (2017; citation below), which analyzed establishments of all types of non-native species globally. The British scientists found that rapidly increasing global trade is the probable driver of the recent acceleration of human-assisted introductions. They emphasize the horticultural trade’s role specifically. Climate change might play a role in facilitating establishment of species entering the UK via human activities.

Hordley et al. found that long-term changes in climate, not recent rapid anthropogenic warming, was important in facilitating introductions of even those moth species that arrived without human assistance. As they note, temperatures in Great Britain have been rising since the 17th Century. These changes in temperature have probably made the British climate more suitable for a large number of Lepidoptera. The data show that the rate of natural establishments began rising in the 1930s, 60 years before anthropogenic changes in temperatures became evident. Hordley et al. point out that an earlier study that posited a more significant role for climate change did not distinguish between insect species which have colonized naturally and those benefitting from human assistance.

The authors expect introductions to continue, spurred by ongoing environmental and economic changes. Fortunately, very few of the introduced moths had any direct or indirect negative impacts. (The box-tree moth (Cydalima perspectalis) is the exception. [Box-tree moth is also killing plants in North America.]

boxtree moth; photo by Tony Morris via Flickr

Still, they consider that introductions pose an ongoing potential risk to native biodiversity and related human interests. Therefore, they advocate enhanced biosecurity. Specifically, they urge improved monitoring of natural colonizations and regulation of the horticultural trade.

Hordley et al. estimated the rate of establishment during the period 1900 – 2019 for (i) all moth species; (ii) immigrants (i.e., those introduced without any human assistance); (iii) immigrants which feed on native hosts; (iv) immigrants which feed on non-native hosts; (v) adventives (i.e., species introduced with human assistance); (vi) adventives which feed on native hosts; and (vii) adventives which feed on NIS hosts.

Their analysis used data on 116 moth species that have become established in Great Britain since 1900. Nearly two-thirds of these species – 63% – feed on plant species native to Great Britain; 34% on plant species that have been imported – intentionally or not. Data were lacking on the hosts of 3 species.

Considering the mode of introduction, the authors found that 67% arrived through natural colonization; 33% via human assistance. Sixty-nine percent of the 78 species that were introduced through natural processes (54 species) feed on plant species native to Great Britain; 31% (24 species) feed on non-native plants. Among the 38 species whose introduction was assisted by human activities, one-half (19 species) feed on native plant species; 42% (16 species) feed on introduced hosts.

Regarding trends, they found that when considering all moth species over the full period, 21.5% more species established in each decade than in the previous decade. This average somewhat obscured the startling acceleration of introductions over time: one species was reported as established in the first decade (1900–1909) compared to 18 species in the final decade (2010–2019).   

The rate of introduction for all immigrant (naturally introduced) species was 22% increase per decade. Considering immigrant species that feed on native plants, the rate of establishment was nearly the same – 23% increase per decade – when averaged over the 120-year period. However, a more detailed analysis demonstrated that these introductions proceeded at a steady rate until 1935, then accelerated by 11% per decade thereafter. In contrast, immigrants that feed on non-native plants have maintained a steady rate of increasing establishments – 13% per decade since 1900.

Adventive species (those introduced via human assistance) increased by 26% per decade. The data showed no signs of saturation. The rates of introduction were similar for adventives that feed on both native plants (22%) and non-native hosts (26%). Again, additional analysis demonstrated a break in rates for adventives that feed on native hosts. The rate was steady until the 1970s, then significantly increased during the years up to 2010. (The scientists dropped data from the final decade since lags in detection might artificially suppress that number.)

In summary, Hordley et al. found no significant differences in trends between

  • the number of species that established naturally (20%) vs. adventives (26%).
  • immigrant or adventive species that feed on native vs. non-native hosts.

The authors discuss the role of climate change facilitating bioinvasion by spurring natural dispersal, changing propagule pressure in source habitats, changing the suitability of receiving habitat, and changing in pathways for natural spread, e.g., altered wind and ocean currents. They recognize that the two modes of colonization – adventives and immigrants – can interact. They stress, however, that the two colonization modes require different interventions.

Although their findings don’t support the premise that a surge of natural colonizers has been prompted by anthropogenic warming, Hordley et al. assert that climate clearly links to increased moth immigration to Britain and increased probability of establishment. They note that even so assisted, colonists still must overcome both the natural barrier of the English Channel and find habitats that are so configured as to   facilitate breeding success. They report that source pools do not appear to be depleted — moth species richness of neighboring European countries greatly exceeds that in Great Britain.

I would have liked to learn what factors they think might explain the acceleration in both natural and human-assisted introductions of species that feed on plant species native to Great Britain. In 2023 I noted that scientists have found that numbers of established non-native insect species are driven primarily by diversity of plantsboth native and non-indigenous.

Hordley et al. assert that Great Britain has advantages as a study location because as a large island separated from continental Europe by the sea – a natural barrier – colonization events are relatively easy to detect. However the English Channel is only 32 km across at its narrowest point. I wonder, whether this relatively narrow natural barrier might lead to a misleadingly large proportion of introduced species being natural immigrants. I do agree with the authors that moths are an appropriate focal taxon because they are sensitive to climate and can be introduced by international trade. Furthermore, Britain has a long tradition of citizen scientists recording moth sightings, so trends can be assessed over a long period.

Hordley et al. stress that they measured only the temporal rate of new species’ establishments, not colonization pressure or establishment success rate. They had no access to systematic data regarding species that arrived but failed to establish. Therefore, they could not deduce whether the observed increase in establishment rates are due to:

(1) more species arrivingdue either to climate-driven changes in dispersal or to accessibility of source pools; or

(2) higher establishment success due to improved habitat and resource availability; or

(3) both.

Hordley et al. noted two limitations to their study. First, they concede that there is unavoidably some subjectivity in classifying each species as colonizing naturally or with human assistance. They tried to minimize this factor by consulting two experts independently and including in the analysis only those species on which there was consensus.

Second, increases in detection effort and effectiveness might explain the recent increases in establishment rates. They agree that more people have become “citizen scientists” since 1970. Also, sampling techniques and resources for species identification have improved considerably. They note, however, that Seebens et al. (2018) tested these factors in their global assessment and found little effect on trends.

Hordley et al. believe that they have addressed a third possible limitation – the lag between introduction and detection – by running their analyses both with and without data from final decade (2010-2019). The results were very similar qualitatively.

SOURCE

Hordley, L.A., E.B. Dennis, R. Fox, M.S. Parsons, T.M. Davis, N.A.D. Bourn. 2024. Increasing rate of moth species establishment over 120 years shows no deceleration. Insect Conserv. Divers. 2024;1–10. DOI: 10.1111/icad.12783

Seebens, H. et al. 2017. No saturation in the accumulation of alien species worldwide. Nature Communications. January 2017. DOI: 10.1038/ncomms14435

Seebens, H. et al. 2018. Global rise in emerging IAS results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences. www.pnas.org/cgi/doi/10.1073/pnas.1719429115

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at  https://treeimprovement.tennessee.edu/

or

www.fadingforests.org

Phytophthora here, Phytopthora there … level of threat is unclear

Mt. Triglav – highest peak in the Slovenian (Julian) Alps; photo by Gunter Nuyts via Pexel

Scientists have discovered sizable diversity of pathogenic Phytophthora species in Europe, specifically in the Alps of northeastern Italy and western Slovenija.  They have also named a new species, and noted the need to change the definition of species previously named. See Bregant et al. – full citation at the end of this blog – open access!

Two of its findings are especially important for the US

First, the authors document the vulnerability of alpine areas to 18 Phythophthora species. Most of the plant hosts they studied have congenerics in mountainous areas of North America: Acer, Alnus, Betula, Fagus, Fragaria, Fraxinus, Ilex, Juniperus, Larix, Lonicera, Lycopodium, Pinus, Populus, Quercus, Rhododendron, Rubus, Salix, Sorbus, Taxus, and Vaccinium.

Second, the paper discusses how junipers are at particular risk. I remind you that P. austrocedrii has recently been detected in nurseries in Ohio and Oregon. This is another non-native Phythophthora that attacks junipers. I hope authorities are actively seeking to determine whether P. austrocedrii is present in nurseries or natural systems in other parts of the country.

The genus Phytophthora includes many serious plant pathogens, from the one that caused the disastrous potato blight of Ireland (Phytophthora infestans) to globally important forest-destroying invasive species, e.g., P. cinnamomi and “sudden oak death” P. ramorum.

Bregant et al. surveyed 33 small tree, shrub, and herbaceous plant species in 54 sites on the Italian island of Sardinia and the Alps of both northeastern Italy and western Slovenija. Altitudes varied from the valley bottom (700 m) to above tree line (2100 m). Sites included typical forests, riparian ecosystems, and heathlands.

The 360 isolates taken from 397 samples belonged to 17 known Phytophthora species. Some species are widespread and well-known, e.g., P. pseudosyringae. Three isolates belonged to a putative new species described by Bregant et al. – Phytophthora pseudogregata sp. nov. This total of 18 taxa was unexpectedly high. Many of the species are able to cause aerial infections via production of caducous sporangia. These can infect various organs of the plant host: fruits, leaves, shoots, twigs and branches; and cause necrosis and rots. They detected 56 new host–pathogen associations. All are listed, by type of host, in Tables 4 – 6 of the paper.

The surprising diversity and detection of taxa previously described in Australia (see below) illustrate   scientists’ still poor understanding of this genus. They also confirm fears that the global phytosanitary system is unable control intercontinental movement of Phytophthora.

The authors express concern because Alpine and subalpine regions are important hotspots for floral biodiversity. The great variation in altitude, aspect, moisture regimes, etc. – including extreme conditions – results in many different habitats on small spatial scales, with large numbers of both plant species and endemics in very confined spaces. The pathogens they discovered are spreading and compromising the biodiversity of these ecologically fragile habitats.

The authors say their study emphasizes the need to assess the full diversity of Phytophthora species and the factors driving the emergence and local spread of these invasive pathogens. They specify studying the Phytophthora communities on fallen leaves to evaluate host specificity, geographic distribution and survival strategies of the main Phytophthora species detected in this study. They report that scientists are currently mapping the distribution of the new species, P. pseudogregata, in the Alpine habitats and trying to establish its natural host range.

another view of the Julian Alps; photo via Rawpixl

Bregant et al. point out that increased scientific interest over the last 30 years has led to discovery of several previously unknown Phytophthora species and pathogen-host associations. They note that all but two of the taxa in one taxonomic grouping, Sub-clade 6b, have been described in the last 12 years. The majority of taxa have been described from forest ecosystems. This trend is depicted in Figure 8 of the article. This figure also displays which species were isolated from nurseries, agricultural systems, and forest ecosystems.

Results by Plant Type – Disease incidence was highest in shrub vegetation, alpine heathlands and along the mountain riparian systems. The most impacted ecosystems were heathlands dominated by common juniper & blueberry, and riparian systems dominated by alders. In these ecosystems, the Phytophthora-caused outbreaks had reached epidemic levels trend with a high mortality rate. On shrubs and heath formations, disease was initially observed in small areas and progressively spread in a concentric manner affecting more plant species.

Hosts and Diseases – Table 3 in the article lists the 33 host plant species, briefly describes the symptoms, and in some cases provides incidence and mortality rates. Those hosts described as suffering “sudden death” included Alnus viridis, Calluna vulgaris, Genista corsica, Juniperus communis, Lycopodium clavatum, Pinus mugo,Rhododendron ferrugineum, Salix alpine, Vaccinium myrtillus and Vaccinium vitis-idaea

Role of P. pseudosyringae The most common and widespread species detected was P. pseudosyringae. It constituted more than half of the isolates (201 of the 360). Also, it infected the highest number of hosts (25 out of 33, including all three plant types). It was isolated at 36 of the 54 sites distributed throughout all geographic regions. Seventeen of the host–pathogen associations were new to science. (See Tables 4-6, in the paper.)

Vaccinium myrtillis – a vulnerable host; photo by Tatyana Prozovora via Wikimedia

P. pseudosyringae dominated disease agents in the shrub community, especially among high-altitude shrubs and heaths, e.g., blueberry, dwarf pine, juniper, rhododendron, and alpine willows. Bregant et al. note that these shrubs are extremely low-growing (an adaptation to high elevation conditions). This form might favor attack by Phytophthora sporangia and zoospores present in fallen leaves. Vaccinium myrtillus suffers particularly severe disease – as previously reported in Ireland. In their laboratory studies, Bregant et al. found P. pseudosyringae to be highly aggresse on common juniper (Juniperus communis), producing wood necrosis and shoot blight only four weeks after inoculation.

The importance of P. pseudosyringae in mountainous regions has been found in previous studies in Asia, Europe, and North and South America. However, the authors call for further study of certain aspects of the species. These regard infectivity and survival of the species’ sporangia in infected tissues fallen to the ground; and the ability of oospores to persist for years in environments subject to extreme low temperatures. The former could increase the risk of outbreaks and promote faster disease progression.

The authors suggest P. pseudosyringae’s survival stems from its production of very large and thick-walled chlamydospores. This reported feature is in contradiction with the original species description, which prompts Bregant et al. to call for a correction.

Other Species, Old and New – P. cactorum was the only Phytophthora species other than P. pseudosyringae detected on all three types of hosts (small trees, shrubs, and herbaceous plants). Phytophthora plurivora was the second-most isolated species. It was detected on 12 hosts in 24 sites.

The new putative species — Phytophthora pseudogregata sp. nov. – was detected on Alnus viridis, Juniperus communis, and Rhododendron ferrugineum. As noted above, scientists are now testing whether other plant species are also hosts. It was detected at two sites in Italy — Borso del Grappa and San Nicolò di Comelico; and one site in Slovenija.

Juniperus communis; photo by Joan Simon via Flickr

Diseases of Juniper – Koch’s postulates have been fulfilled, demonstrating that eight Phytophthora species – the new P. pseudogregata sp. nov. as well as P. acerina, P. bilorang, P. gonapodyides, P. plurivora, P. pseudocryptogea, P. pseudosyringae, P. rosacearum are pathogenic on common juniper (Juniperus communis). The lesions caused by P. pseudosyringae were significantly larger than those caused by other species. Lesions caused by P. pseudosyringae, P. plurivora and acerina progressively girdled the twigs causing shoot blight, browned foliage & wilting symptoms.

Most Threatening Phytophthora clades – The most-frequently isolated Phytophthora species belong mainly to clades 1 and 3 – including P. pseudosyringae. Bregant et al. say these species have several advantages for surviving in mountainous ecosystems: they produce caducous sporangia useful for aerial infections and they tolerate relatively low temperatures. Twoother species in clade 3 were isolated only from the mountains of Sardinia. One, P. psychrophila, was isolated from bleeding cankers on an oak species, Quercus pubescens. Its geographic distribution and impact are still unknown. A second species, P. ilicis, is a well-known pathogen on various hollies in Europe and North America.

Four species belonging to subclade 1a were isolated in the Alps of northeastern Italy and Slovenija. P. cactorum is a widespread polyphagous pathogen found from tropical to temperate climates. It has been responsible for severe diseases on agricultural crops and forest trees. Its occurrence in cold areas has recently been reported in Europe and Australia. The recently described P. alpina has the highest ability to survive in extremely cold conditions. It was detected on four hosts – Alnus viridis, Lonicera alpigena, Vaccinium myrtillus, and V. vitis-idaea.

Some species, e.g., P. hedraiandra and P. idaei, were reported for the first time in natural ecosystems in Europe. They have previously been linked to root and foliar disease in agricultural and ornamental nurseries.

The second-most common species in the Bregant et al. study, P. plurivora, was isolated from 54 symptomatic samples from 12 plant species; eight of the hosts are new. It is common in forest ecosystems of Central Europe – which is now considered to be its region of origin. Little is known about the closely related P. acerina. To date, the latter has been detected widely in agricultural systems, nurseries, forests, and ornamental trees in northern Italy and Sardinia. It is much more rarely found elsewhere. Both P. acerina and P. plurivora are already known to be primary pathogens involved in decline of common and grey alder in Italy.

Five of the Phytophthora species in this study, including the new species P. pseudogregata, are in Clade 6. These include pathogens very common in European forests, e.g., P. bilorbang and P. gonapodyides. Others have more limited or still unknown distributions, e.g., P. amnicola and P. rosacearum. These five species’ ability to cause aerial infections on mountain vegetation might warrant re-evaluation of the reputation of species in this clade being saprophytes or only occasional weak opportunistic pathogens.

P. pseudogregata – in sub-clade 6a – was originally described in 2011 in wet native forests in Australia and on dying alpine heathland vegetation in Tasmania. It has recently been reported in the Czech Republic and Finland. The related P. gibbosa is known to occur only in Australia, where it is associated with dying native vegetation on seasonally wet sites.

Two species of clade 8 — P. kelmanii & P. syringae — have a very limited distribution. A third – P. pseudocryptogea — is widespread in Italian ecosystems from Mediterranean areas to the tree line in the Dolomites. One species from clade 7 (P. cambivora) isolated, mainly from stem bleeding cankers of small trees and shrubs. It has two mating types; bothoccurr in the Alps of northeastern Italy and neighboring Slovenija — on Alnus incana, Laburnum alpinum and Sorbus aucuparia.

SOURCE

Bregant, C., G. Rossetto, L. Meli, N. Sasso, L. Montecchio, A. Brglez, B. Piškur, N. Ogris, L. Maddau, B.T. Linaldeddu. 2024. Diversity of Phytophthora Species Involved in New Diseases of Mountain Vegetation in Europe with the Description of Phytophthora pseudogregata sp. nov. Forests 2023, 14, 1515. https://doi.org/10.3390/f14081515 https://www.mdpi.com/journal/forests

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at  https://treeimprovement.tennessee.edu/

or

www.fadingforests.org