Scientists: Introduced forest pest reshaping forests, with many bad consequences … will regulators step up?

Jarrah dieback in Western Australia

The number of introduced forest pathogens are increasing – creating a crisis that is recognized by more scientists. These experts say tree diseases are reshaping both native and planted forests around the globe. The diseases are threatening biodiversity, ecosystem services, provision of products, and related human wellbeing. Some suggest that bioinvasions might threaten forests as much as climate change, while also undermining forests’ role in carbon sequestration.

Unfortunately, I see little willingness within the plant health regulatory community to tackle improving programs to slow introductions. Even when the scientists documenting the damage work for the U.S. Department of Agriculture – usually the U.S. Forest Service — USDA policy-makers don’t act on their findings. [I tried to spur a conversation with USDA 2 years ago. So far, no response.]

counties where beech leaf disease has been detected

What the scientists say about these pests’ impacts

Andrew Gougherty (2023) – one of the researchers employed by the USDA Forest Service – says that emerging infectious tree diseases are reshaping forests around the globe. Furthermore, new diseases are likely to continue appearing in the future and threaten native and planted forests worldwide. [Full references are provided at the end of the blog.] Haoran Wu (2023/24) – a Master’s Degree student at Oxford University – agrees that arrival of previously unknown pathogens are likely to alter the structure and composition of forests worldwide. Weed, Ayers, and Hicke (2013) [academics] note that forest pests — native and introduced — are the dominant sources of disturbance to North American forests. They suggest that, globally, bioinvasions might be at least as important as climate change as threats to the sustainability of forest ecosystems. They are concerned that recurrent forest disturbances caused by pests might counteract carbon mitigation strategies. 

Scientists have proclaimed these warnings for years. Five years ago, Fei et al. (2019) reported that the 15 most damaging pests introduced to the United States — cumulatively — had already caused tree mortality to exceed background levels by 5.53 teragrams of carbon per year. As these 15 pests spread and invasions intensify, they threaten 41.1% of the total live forest biomass in the 48 coterminous states. Poland et al. (2019) (again – written by USFS employees) document the damage to America’s forest ecosystems caused by the full range of invasive species, terrestrial and aquatic.

Fei et al. and Weed, Ayers, and Hicke (2013) also support the finding that old, large trees are the most important trees with regard to carbon storage. This understanding leads them to conclude that the most damaging non-native pests are the emerald ash borer, Dutch elm disease fungi, beech bark disease, and hemlock woolly adelgid. As I pointed out in earlier blogs, other large trees, e.g., American chestnut and several of the white pines, were virtually eliminated from much of their historical ranges by non-native pathogens decades ago. These same large, old, trees also maintain important aspects of biological diversity.

It is true that not all tree species are killed by any particular pest. Some tree genera or species decrease while others thrive, thus altering the species composition of the affected stands (Weed, Ayers, and Hicke). This mode of protection is being undermined by the proliferation of insects and pathogens that cumulatively attack ever more tree taxa. And while it is true that some of the carbon storage capacity lost to pest attack will be restored by compensatory growth in unaffected trees, this faster growth is delayed by as much as two or more decades after pest invasions begin (Fei et al.).

ash forest after EAB infestation; Photo by Nate Siegert, USFS

Still, despite the rapid rise of destructive tree pests and disease outbreaks, scientists cannot yet resolve critical aspects of pathogens’ ecological impacts or relationship to climate change. Gougherty notes that numerous tree diseases have been linked to climate change or are predicted to be impacted by future changes in the climate. However, various studies’ findings on the effects of changes in moisture and precipitation are contradictory. Wu reports that his study of ash decline in a forest in Oxfordshire found that climate change will have a very small positive impact on disease severity through increased pathogen virulence. Weed, Ayers, and Hicke go farther, making the general statement that despite scientists’ broad knowledge of climate effects on insect and pathogen demography, they still lack the capacity to predict pest outbreaks under climate change. As a result, responses intended to maintain ecosystem productivity under changing climates are plagued by uncertainty.

Clarifying how disease systems are likely to interact with predicted changes in specific characteristics of climate is important — because maintaining carbon storage levels is important. Quirion et al. (2021) estimate that, nation-wide, native and non-native pests have decreased carbon sequestration by live forest trees by at least 12.83 teragrams carbon per year. This equals approximately 9% of the contiguous states’ total annual forest carbon sequestration and is equivalent to the CO2 emissions from more than 10 million passenger vehicles driven for one year. Continuing introductions of new pests, along with worsening effects of native pests associated with climate change, could cause about 30% less carbon sequestration in living trees. These impacts — combined with more frequent and severe fires and other forest disturbances — are likely to negate any efforts to improve forests’ capacity for storing carbon.

Understanding pathogens’ interaction with their hosts is intrinsically complicated. There are multiple biological and environmental factors. What’s more, each taxon adapts individually to the several environmental factors. Wu says there is no general agreement on the relative importance of the various environmental factors. The fact that most forest diseases are not detected until years after their introduction also complicates efforts to understand factors affecting infection and colonization.

The fungal-caused ash decline in Europe is a particularly alarming example of the possible extent of such delays. According to Wu, when the disease was first detected – in Poland in 1992 – it had already been present perhaps 30 years, since the 1960s.  Even then, the causal agent was not isolated until 2006 – or about 40 years after introduction. The disease had already spread through about half the European continent before plant health officials could even name the organism. The pathogen’s arrival in the United Kingdom was not detected until perhaps five years after its introduction – despite the country possessing some of the world’s premier forest pathologists who by then (2012) knew what they to look for. 

Clearly, improving scientific understanding of forest pathogens will be difficult. In addition, effective policy depends on understanding the social and economic drivers of trade, development, and political decisions are primary drivers of the movement of pathogens. Wu calls for collaboration of ecologists, geneticists, earth scientists, and social scientists to understand the complexity of the host-pathogen-surrounding system. Bringing about this new way of working and obtaining needed resources will take time – time that forests cannot afford.  

However, Earth’s forests are under severe threat now. Preventing their collapse depends on plant health officials integrating recognition of these difficulties into their policy formulation. It is time to be realistic: develop and implement policies that reflect the true level of threat and limits of current science.

Background: Rising Numbers of Introductions

Gougherty’s analysis of rising detections of emerging tree diseases found little evidence of saturation globally – in accord with the findings of Seebens et al. (2017) regarding all taxa. Relying on data for 24 tree genera, nearly all native to the Northern Hemisphere, Gougherty found that the number of new pests attacking these tree genera are doubling on average every 11.2 years. Disease accumulation is increasing rapidly in both regions where hosts are native and where they are introduced, but more rapidly in trees’ native ranges.This finding is consistent with most new diseases arise from introductions of pathogens to naïve hosts.

Gougherty says his estimates are almost certainly underestimates for a number of reasons. Countries differ in scientific resources and their scientists’ facility with English. Scientists are more likely to notice and report high-impact pathogens and those in high-visibility locations. Where national borders are closer, e.g., in Europe, a minor pest expansion can be reported as “new” in several countries.  New pathogens in North America appear to occur more slowly, possibly because the United States and Canada are very large. He suggests that another possible factor is the U.S. (I would add Canada) have adopted pest-prevention regulations that might be more effective than those in place in other regions. (See my blogs and the Fading Forest reports linked to below for my view of these measures’ effectiveness.)

ash dieback in the UK

Wu notes that reports of tree pathogens in Europe began rising suddenly after the 1980s. He cites the findings by Santini et al. (2012) that not only were twice as many pathogens detected in the period after 1950 than in the previous 40 years, the region of origin also changed. During the earlier period, two-thirds of the introduced pathogens came from temperate North America. After 1950, about one-third of previously unknown disease agents were from temperate North America. Another one-third was from Asia. By 2012, more than half of plant infectious diseases were caused by introduction of previously unknown pathogens.

What is to be done?

Most emerging disease agents do not have the same dramatic effects as chestnut blight in North America, ash dieback in Europe, or Jarrah dieback in Australia. Nevertheless, as Gougherty notes, their continued emergence in naïve biomes increases the likelihood of especially damaging diseases emerging and changing forest community composition.

Gougherty calls for policies intended to address both the agents being introduced through trade, etc., and those that emerge from shifts in virulence or host range of native pathogens or changing environmental conditions. In his view, stronger phytosanitary programs are not sufficient.

Wu recommends enhanced monitoring of key patterns of biodiversity and ecosystem functioning, He says these studies should focus on the net outcome of complex interactions. Wu also calls for increasing understanding of key “spillover” effects – outcomes that cannot be currently assessed but might impact the predicted outcome. He lists several examples:

  • the effects of drought–disease interactions  on tree health in southern Europe,
  • interaction between host density and pathogen virulence,
  • reproductive performance of trees experiencing disease,
  • effect of secondary infections,
  • potential for pathogens to gain increased virulence through hybridization.
  • potential for breeding resistant trees to create a population buffer for saving biological diversity. Wu says his study of ash decline in Oxfordshire demonstrates that maintaining a small proportion of resistant trees could help tree population recovery.

Quirion et al. provide separate recommendations with regard to native and introduced pests. To minimize damage from the former, they call for improved forest management – tailored to the target species and the environmental context. When confronting introduced pests, however, thinning is not effective. Instead, they recommend specific steps to minimize introductions via two principal pathways, wood packaging and imports of living plants. In addition, since even the most stringent prevention and enforcement will not eliminate all risk, Quirion et al. advocate increased funding for and research into improved strategies for inspection, early detection of new outbreaks, and strategic rapid response to newly detected incursions. Finally, to reduce impacts of established pests, they recommend providing increased and more stable funding for classical biocontrol, research into technologies such as sterile-insect release and gene drive, and host resistance breeding.

USDA HQ

Remember: reducing forest pest impacts can simultaneously serve several goals—carbon sequestration, biodiversity conservation, and perpetuating the myriad economic and societal benefits of forests. See Poland et al. and the recent IUCN report on threatened tree species.

SOURCES

Barrett, T.M. and G.C. Robertson, Editors. 2021. Disturbance and Sustainability in Forests of the Western United States. USDA Forest Service Pacific Northwest Research Station. General Technical Report PNW-GTR-992. March 2021

Clark, P.W. and A.W. D’Amato. 2021. Long-term development of transition hardwood and Pinus strobusQuercus mixedwood forests with implications for future adaptation and mitigation potential. Forest Ecology and Management 501 (2021) 119654

Fei, S., R.S. Morin, C.M. Oswalt, and A.M. 2019. Biomass losses resulting from insect and disease invasions in United States forests. Proceedings of the National Academy of Sciences. www.pnas.org/cgi/doi/10.1073/pnas.1820601116  

Gougherty AV (2023) Emerging tree diseases are accumulating rapidly in the native and non-native ranges of Holarctic trees. NeoBiota 87: 143–160. https://doi.org/10.3897/neobiota.87.103525

Lovett, G.M., C.D. Canham, M.A. Arthur, K.C. Weathers, and R.D. Fitzhugh. 2006. Forest Ecosystem Responses to Exotic Pests and Pathogens in Eastern North America. BioScience Vol. 56 No. 5 May 2006

Lovett, G.M., M. Weiss, A.M. Liebhold, T.P. Holmes, B. Leung, K.F. Lambert, D.A. Orwig, F.T. Campbell, J. Rosenthal, D.G. MCCullough, R. Wildova, M.P. Ayres, C.D. Canham, D.R. Foster, S.L. Ladeau, and T. Weldy. 2016.  Nonnative forest insects and pathogens in the United States: Impacts and policy options.  Ecological Applications, 26(5), 2016, pp. 1437-1455

Poland, T.M., Patel-Weynand, T., Finch, D., Miniat, C. F., and Lopez, V. (Eds) (2019), Invasive Species in Forests and Grasslands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector.  Springer Verlag.

Quirion, B.R., G.M. Domke, B.F. Walters, G.M. Lovett, J.E. Fargione, L. Greenwood, K. Serbesoff-King, J.M. Randall, and S. Fei. 2021 Insect and Disease Disturbance Correlate With Reduced Carbon Sequestration in Forests of the Contiguous US. Front. For. Glob. Change 4:716582.  [Volume 4 | Article 716582] doi: 10.3389/ffgc.2021.716582

Weed, A.S., M.P. Ayers, and J.A. Hicke. 2013. Consequences of climate change for biotic disturbances in North American forests. Ecological Monographs, 83(4), 2013, pp. 441–470

Wu, H. 2023/24. Modelling Tree Mortality Caused by Ash Dieback in a Changing World: A Complexity-based Approach MSc/MPhil Dissertation Submitted August 12, 2024. School of Geography and the Environment, Oxford University.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at  https://treeimprovement.tennessee.edu/

or

www.fadingforests.org

Impacts of introduced rust on unique flora — New Zealand’s expectations

predicted community vulnerability from A. psidii mediated mortality of Kunzea ericoides & Leptospermum scoparium; from McCarthy et al.

Scientists in New Zealand have recently completed a study of the probable impact of myrtle rust – caused by Austropuccinia psidii – on plants in the plant family Myrtaceae. McCarthy et al. say their results should guide management actions to protect not only the unique flora of those islands but also on Australia and Hawai`i – other places where key dominant tree species are susceptible to myrtle rust. The disease attacks young tissue; susceptible Myrtaceae become unable to recruit new individuals or to recover from disturbance. Severe cases can result in tree death & localized extinctions

[I note that myrtle rust is not the only threat to the native trees of these biologically unique island systems. New Zealand’s largest tree, kauri (Agathis australis), is threatened by kauri dieback (caused by Phytophthora agathidicida). On Hawai`i, while the most widespread tree, ‘ōhi‘a (Metrosideros polymorpha) is somewhat vulnerable to the strain of rust introduced to the Islands, the greater threat is from a different group of fungi, Ceratocystis lukuohia and C. huliohia, collectively known as rapid ‘ōhi‘a death. On Australia, hundreds of endemic species on the western side of the continent are being killed by Phytophthora dieback, caused by Phytophthora cinnamomi. [I note the proliferation of tree-kiling pathogens; I will blog more about this in the near future.]

Myrtle rust arrived in New Zealand in 2017, probably blown on the wind from Australia (where it was detected in 2010). In New Zealand, myrtle rust infects at least 12 of 18 native tree, shrub, and vine species in the Myrtaceae plant family. Several of these species are important in the structure and succession of native ecosystems. They also have enormous cultural significance.

McCarthy et al. note that species differ in their contribution to forest structure and function. They sought to determine where loss of vulnerable species might have the greatest impact on community functionality. They also explored whether compensatory infilling by co-occurring, non-vulnerable species in the Myrtaceae would reduce the community’s vulnerability. Even when co-occurring Myrtaceae are relatively immune to the pathogen, only some of them – the fast-growing species – are likely to fill the gaps. They might lack the functional attributes of the decimated species.

To identify areas at greatest risk, McCarthy et al. took advantage of a nationwide vegetation plot dataset that covers all the country’s native forests and shrublands. The plot data enabled McCarthy et al. to determine which plant species not vulnerable to the rust are present and so are likely to replace the rust host species as they are killed.

Leptospermum scoparium; photo by Alyenaa Buckles via Flickr

McCarthy et al. concluded that forests and shrublands containing Kunzea ericoides and Leptospermum scoparium are highly vulnerable to their loss. Ecosystems with these species are found predominantly in central and southeastern North Island, northeastern South Island, and Stewart Island. While compensatory infilling by other species in the Myrtaceae would moderate the impact of the loss of vulnerable species, if these co-occurring species were unable to respond for various reasons, such as also being infected by the rust pathogen, community vulnerability almost always increased. In these cases the infilling species would probably have different functional attributes. In many areas the species most likely to replace the rust-killed native species would be non-native shrubs. Consequently, early successional woody plant communities, where K. ericoides and L. scoparium dominate, are at most risk.

Because the risk of A. psidii infection is lower in cooler montane and southern coastal areas, parts of inland Fiordland, the northwestern South Island and the west coast of the North Island might be less vulnerable.

Austropuccinia psidii has been spreading in Myrtaceae-dominated forests of the Southern Hemisphere since the beginning of the 21st Century. It was detected in Hawai`i in 2005; in Australia in 2010; in New Caledonia in 2013, and finally in New Zealand in 2017. Within 12 months of its first detection in the northern part of the North Island it had spread to the northern regions of the South Island.

Specific types of Threat

Succession

The ecosystem process most at risk to loss of Myrtaceae species to A. psidii is succession. About 10% of once-forested areas of New Zealand are in successional shrublands, mostly dominated by Kunzea ericoides and Leptospermum scoparium. Both species are wind dispersed, grow quickly, are resistant to browsing by introduced deer, and are favored by disturbance, especially fire. Both are tolerant of exposure and have a wide edaphic range (including geothermal soils). Still, K. ericoides prefers drier, warmer sites while L. scoparium tolerates saturated soils, frost hollows and subalpine settings.

Kunzea ericoides; photo by Tony Foster via Flickr

Loss of these two species would result in a considerable change in stand-level functional composition across a wide variety of locations. Their extensive ranges mean that it would be difficult for other species – even if functionally equivalent – to expand sufficiently quickly. Second, non-native species are common in these communities. All of these invaders – Ulex europaeus, Cytisus scoparius and species of Acacia, Hakea and Erica – promote fire. Some are nitrogen fixers. While they can facilitate succession, the resulting native forest will differ from that formed via Leptospermeae succession. Furthermore, compensatory infilling by the invasive species might also reduce carbon sequestration. Successional forests dominated by K. ericoides are significant carbon sinks owing to the tree’s size (up to 25 m under favorable conditions), high wood density, and long lifespan (up to ~150 years). In contrast, shrublands dominated by at least one of the non-native species, U. europaeus, are significant carbon sources.

Northern and central regions of the North Island and the northeastern and interior parts of the South Island are most vulnerable to the loss of these species since these successional shrub communities are widespread and the area’s climate is highly suitable for A. psidii infection. The southern regions of the South Island, including Stewart Island, are somewhat protected by the cooler climate.

Fortunately, neither Kunzea ericoides nor Leptospermum scoparium has yet been infected in nature. Laboratory trials indicate that some families of K. ericoides are resistant. Vulnerability also varies among types of tissue – i.e., leaf, stem, seed capsule.  

Metrosideros umbellata; photo by Stan Shebs via Wikimedia

Forest biomass

Although from the overall community perspective loss of species in the Metrosidereae would have a lower impact than loss of those in the Leptospermeae, there would be significant changes associated with loss of Metrosideros umbellata. This species can grow quite large (dbh often > 2 m; heights up to 20 m). That size and its exceptionally dense wood means that M. umbellata stores high amounts of carbon. Also, its slow decomposition provides habitat for decomposers. Lessening the potential impact of loss of this species are two facts: its litter nutrient concentrations and decomposition rates do not differ from dominant co-occurring trees; and, most important, it grows primarily in the south, where weather conditions are less suitable for A. psidii infection. One note of caution: if A. psidii proves able to spread into these regions, not only M. umbellata but also susceptible co-occurring Myrtaceae species are likely to be damaged by the pathogen.

Highly specific habitats

McCarthy et al. note that their study might underestimate the impact of loss of species with unique traits that occupy specialized habitats. They focus on the climber Metrosideros excelsa. This is an important successional species that helps restore ecosystems following fire, landslides, or volcanic eruptions. The species’ tough and nutrient poor leaves promote later successional species by forming a humus layer and altering the microenvironment beneath the plant. Its litter has high concentrations of phenolics and decomposes more slowly than any co-occurring tree species.  [They say its role is analogous to that of M. polymorpha in primary successions on lava flows in Hawai`i.] M. excelsa dominates succession on many small offshore volcanic islands, rocky coastal headlands and cliffs.

Another example is Lophomyrtus bullata, a small tree that is patchily distributed primarily in forest margins and streamside vegetation. This is the native species most affected by A. psidii; the pathogen is likely to cause its localized extinction. McCarthy et al. call for assessment of ex situ conservation strategies for this species.

Each of these species is represented in only seven of the plots used in the analysis, so community vulnerability to their loss might be underestimated.

Another habitat specialist, Syzygium maire, is found mostly in lowland forests, usually on saturated soils. It currently occupies only a fraction of its natural range due to deforestation and land drainage. Evaluating the impact of loss of S. maire is complicated by its poor representation in the database (only six plots), and the fact that many of the co-occurring species are also Myrtaceae.

Lack of data similarly prevents detailed assessment of the impacts from possible loss of other species, including M. parkinsonii, M. perforata and L. obcordata. McCarthy et al. say only that their disappearance will “take the community even further from its original state”.

McCarthy et al. warn that the risk could increase if more virulent strains of A. psidii were introduced or evolved through sexual recombination of the current pandemic strain. Other scientists have discovered strong evidence that the many strains of A. psidii attack different host species (see Costa da Silva et al. 2014).

New Zealand bell bird (Anthornis melanura); photo from https://animalia.bio/new-zealand-bellbird

McCarthy et al. note that other factors are also important in determining the impact of loss of a plant species. Especially significant is the host plant species’ association with other species. They say these relationships are poorly understood. One example is that only four Myrtaceae species produce fleshy fruits. Loss or decline of these four species might severely affect populations of native birds, many of which are endemic. Many invertebrates – also highly endemic — are dependent on nectar from other plants in the family.

In their conclusion, McCarthy et al. note that A. psidii has been introduced relatively recently so there is still time to reduce the disease’s potential consequences. They suggest such management interventions as identifying and planting resistant genotypes and applying chemical controls to protect important individual specimens. They hope their work will guide prioritization of both species and spatial locations. They believe such efforts have substantial potential to reduce myrtle rust’s overall functional impact to New Zealand’s unique ecosystems.

SOURCES

Costa da Silva, A; P.M. Teixeira de Andrade, A. Couto Alfenas, R. Neves Graca, P. Cannon, R. Hauff, D. Cristiano Ferreira, and S. Mori. 2014. Virulence and Impact of Brazilian Strains of Puccinia psidii on Hawaiian Ohia (Metrosideros polymorpha). Pacific Science 68(1):47-56.  doi: https://dx.doi.org/10.2984/68.1.4

McCarthy, J.K., S.J. Richardson, I. Jo, S.K. Wiser, T.A. Easdale, J.D. Shepherd, P.J. Bellingham. 2024. A Functional Assessment of Community Vulnerability to the Loss of Myrtaceae From Myrtle Rust. Diversity & Distributions, 2024; https://doi.org/10.1111/ddi.13928

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at  https://treeimprovement.tennessee.edu/

or

www.fadingforests.org

New Attention to Threats to Trees — While They Worsen

ohia (Metrosideros polymorpha) — one subspecies designated as Vulnerable due to restricted range
The species is under attack by rapid ohia death [https://www.dontmovefirewood.org/pest_pathogen/ceratocystis-wilt-ohi-html/]

I welcome new attention to the threats posed to tree species around world.

Last week, at the conclusion of Conference of the Parties (COP) to the Convention on Biodiversity (CBD), the International Union for the Conservation of nature (IUCN) released its most recent iteration of the Red List of Threatened Species. The headline was that 38% of the world’s trees are at risk of extinction.

This is the finding of a decade-long Global Tree Assessment. The assessment was led by Botanic Gardens Conservation International and IUCN’s Species Survival Commission Global Tree Specialist Group. Partners in the effort included Conservation International, NatureServe, Missouri Botanical Garden and Royal Botanic Gardens, Kew. The project was funded primarily by Fondation Franklinia. The foundation was formed in 2005 expressly to conserve threatened tree species!  I regret that I had not heard about it before.

At least 16,425 of the 47,282 tree species assessed are at risk of extinction. Trees now account for over one quarter of species on the IUCN Red List, and the number of threatened trees is more than double the number of all threatened birds, mammals, reptiles and amphibians combined. Tree species are at risk of extinction in 192 countries around the world.

No surprise: the highest proportion of threatened trees is found on islands. Island trees are at particularly high risk due to deforestation for urban development, conversion to agriculture, invasive species, pests and diseases. Climate change is increasingly threatening trees, especially in the tropics, through sea-level rise and stronger, more frequent storms.

The COP was held in Cali, Columbia. This is fitting because South America is home to the greatest diversity of trees in the world. Twenty-five percent – 3,356 out of 13,668 assessed species are at risk of extinction. Forest clearance for crop farming and livestock ranching are the largest threats on the continent. Dr Eimear Nic Lughadha, Senior Research Leader in Conservation Assessment and Analysis at the Royal Botanic Gardens, Kew, said this percentage is sure to increase as many additional tree species are described for science.

IUCN spokespeople emphasized that the loss of trees is a major threat to thousands of other plants, fungi and animals. Cleo Cunningham, Head of Climate and Forests at Birdlife International pointed out that over two-thirds of globally threatened bird species are dependent on forests. Speakers also noted that people depend on trees; over 5,000 of the tree species on the Red List are used in construction, and over 2,000 species provide medicines, food and fuels.

Sam Ross, Sustainable Business Project Analyst at ZSL, noted that “Despite growing pressure to halt worldwide deforestation by 2030, … most of the world’s 100 most significant tropical timber and pulp companies have made limited progress in disclosing their zero deforestation and traceability commitments. We must all do more to safeguard these vital forest ecosystems, especially consumer goods manufacturers, financial institutions funding forestry, and agriculture companies.”

IUCN and the Red List Partners are launching a global social media campaign to raise awareness and funds to accelerate species assessments and reassessments. The campaign will culminate at the IUCN World Conservation Congress in Abu Dhabi, in October 2025.

Impacts from Pathogens Continue to Increase

Meanwhile, in North America and elsewhere, infections by tree-killing pathogens are spreading and intensifying.

tanoak at Big Sur killed by P. ramorum

Phytophthora ramorum (sudden oak death)

In California, P. ramorum the statewide rate of tree infection in 2024 doubled from 2023. Expansions were most obvious in Mendocino and Del Norte counties. Worse, California has now detected a third strain of P. ramorum in its forests. The NA2 strain was first detected in Del Norte County in 2020. Now it has been found in five sites closer to the “core” of the infestation closer to San Francisco Bay. Dr. Matteo Garbelotto believes the strain – formerly known only in nurseries – had been present for some years. It appears to be more aggressive than the strain long present in forests – NA1 – and might be favored by warmer temperatures. [The EU1 strain was detected in Del Norte County in 2021.]

Oregon has been wrestling with the EU1 strain since 2015; the NA2 strain since 2021. Beginning in late 2022, authorities have discovered multiple disease outbreaks between the Rogue River and Port Orford (farther north than the area previously known to be infected). Many of these new outbreaks are the EU1 lineage. The state is struggling to carry out eradication treatments using funds from state legislative appropriations, support from USDA Forest Service and USDI Bureau of Land Management, USDA Agriculture Research Service, and direct Congressional appropriations. The last resulted from assertive lobbying!

The Government Accountability Office is studying interactions between climate change and agricultural pests; sudden oak death is one of four focal pests. The report is expected to be released in 2025.

[Most of this information is from the California Oak Mortality Task Force (COMTF) webinar on 29 October, 2024. Recording available here.]

limber pine in Rocky Mountain National Park; photo by F.T. Campbell

Cronartium ribicola White Pine Blister Rust

Limber pine (Pinus flexilis) is heavily infected by blister rust in Alberta; in its U.S. range

range of limber pine

the disease is increasing. Scientists had been cheered by the presence of major gene resistance (MGR) in limber pine to the rust. However, a strain of blister rust in Alberta has been determined to be virulent despite this gene (Liu et al. 2024). Scientists might have to launch a breeding program to try to enhance quantitative disease resistance (QDR) in the species. Unfortunately, the frequency and level of partial resistance in limber pine has been very low in trees tested so far. Scientists now must test more limber pines to see whether some have higher levels of QDR.

Southwestern white pine (Pinus strobiformis) presents the same problem; the MGR gene might even be the same gene. Some some populations of SWWP have higher partial or quantitative disease resistance.

beech leaf disease in southern Fairfax County, Virginia; photo by F.T. Campbell (apologies for the quality)

Beech leaf disease

BLD continues to be detected in new sites. According to Matthew Borden of Bartlett Tree Research Laboratories, since 2021, BLD has been detected in five counties in Virginia:

  • Prince William County — Prince William Forest Park;
  • Fairfax County: southern Fairfax County on the border with Prince William County (Fountainhead Park, Hemlock Overlook Park, and Meadowood Special Recreation Area), somewhat farther north (Burke Lake Park), and northern edge (Great Falls);
  • Loudoun County;
  • Stafford County – just outside the city of Fredricksburg and along the Spotsylvania river
  • New Kent County in Wahrani Natural Preserve

Several of these outbreaks – e.g., southern Fairfax County, Stafford County, and Loudoun County – are 20 miles or more away from other known outbreaks. Virginia Department of Agriculture staff are monitoring the disease.  All these sites are near water – although the Potomac River in Loudoun County is above the fall line so narrower than at the other sites.

SOURCE

Liu, J-J., R.A. Sniezko, S. Houston, G. Alger, J. Krakowski, A.W. Schoettle, R. Sissons, A. Zamany, H. Williams, B. Rancourt, A. Kegley. 2024. A New Threat to Limber Pine (Pinus flexilis) Restoration in Alberta and Beyond: First Documentation of a Cronartium ribicola race (vcr4) Virulent to Cr4-Controlled Major Gene Resistance. Phytopathology. Published Online:25 Sep 2024 https://doi.org/10.1094/PHYTO-04-24-0129-R

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at  https://treeimprovement.tennessee.edu/

or

www.fadingforests.org