several Euwallaceae species; E. interjectus is 2nd from the top. Photo from Gomez et al. 2018; ZooKeys 768 19-68
In December 2024, California officials announced detection of a third species of invasive shothole borer beetle in the state. This invasion was found in Santa Cruz County in October 2024. The beetle has been identified as Euwallacea interjectus; the associated fungus is Fusarium floridanum. Like other non-native shothole borers in the same genus already known to be in California, Euwallacea interjectus is native to Southeast Asia.
So far, the infestation extends across at least 75 acres (CDFA proposal). It is affecting primarily box elders (Acer negundo). Other tree species have also been attacked: California sycamore (Platanus racemose), coast live oak (Quercus agrifolia), arroyo willow (Salix lasiolepis), red willow (Salix laevigata), and black cottonwood (Populus balsamifera ssp. trichocarpa). [See the CDFA risk assessment referred to below]. While it is too early to know precisely, E. interjectus is expected to pose a risk of tree dieback in urban, wildland and agricultural landscapes similar to that already caused by its relatives — the Polyphagous shot hole borer (Euwallacea fornicatus s.s. [PSHB]) and Kuroshio shot hole borer (Euwallaceakuroshio [(KSHB)].
The Santa Cruz County Department of Agriculture and University of California Cooperative Extension Service are coordinating with the California Department of Food and Agriculture (CDFA) to monitor and respond to the infestation. Research is being conducted by the University of California to evaluate the full range of potential tree species that may be affected by the beetle.
CDFA is seeking input on whether to designate Euwallacea interjectus as a category “B” pest. Under this category, response to the pest would be carried out by the counties at their own discretion, not by the state. You can advise CDFA’s on this decision until 17 February. Go here.
In its proposal, CDFA notes that several tree hosts of the beetle grow throughout California. The analysis gave a risk ranking of “High (3)” in four categories: climate/host interaction, host range, dispersal and reproduction, and ecosystem-level impacts. The economic risk rank is “Medium (2)” because it might attack only stressed trees – although CDFA concedes that drought stress is common in California. The overall determination is that the consequences of Euwallacea interjectus’ introduction to California is “High (14)”. Still, CDFA proposes to leave response to this introduction up to affected counties.
Santa Cruz County is outside the areas identified by a model developed by Lynch et al. (full citation below) as being at high risk of establishment of the Euwallacea-Fusarium complex, based on analysis of sites where Euwallacea fornicatus and E. kuroshio are already established. Nearby areas are ranked at high risk; these include drier areas in the San Francisco Bay region.
There are at least three four beetles in the Euwallacea fornicatus species complex. Several look almost identical to one another; the only reliable way to tell them apart is by looking at their DNA. However, E. interjectus is substantially larger than E. fornicatus and E. kuroshio, the two already-established shothole borers causing damage in southern California.
Various members of the Euwallacea fornicatus species complex have invaded countries around the world and other parts of the United States. While many of these introductions occurred decades ago – e.g., Hawai`i, Florida, possibly Israel, there appears to have been a spurt of introductions around or after 2000. The PSHB was first detected in California in 2003; the KSHB in 2013. As of 2022, disease caused by these two complexes had spread throughout Orange, San Diego, Los Angeles, Riverside, San Bernardino and Ventura counties. Outbreaks have been detected as far north as Santa Barbara /Santa Clarita. The KSHB had “jumped” to more distant locations in San Luis Obispo and Santa Clara counties. So far, the two later detections apparently do not represent established populations. In November 2023, the PSHB beetle–pathogen complex was confirmed killing hundreds of trees in riparian forests in San Jose, in the San Francisco Bay region. Two host trees – California sycamore and valley oaks – are important in the urban forest canopy of the region
NOTE: the invasive shot hole borers and their associated fungi attacking trees in California are completely unrelated to the laurel wilt complex killing trees in the Lauraceae family in eastern States. This complex involves an ambrosia beetle Xyleborus glabratus and associated fungus Harringtonia (formerly Raffaelea) lauricola.
Lynch, S.C., E. Reyes-Gonzalez, E.L. Bossard, K.S. Alarcon, N.L.R. Love, A.D. Hollander, B.E. Nobua-Behrmann & G.S. Gilbert. 2024. A phylogenetic epidemiology approach to predicting the establishment of multi-host plant pests Communications Biology
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at https://treeimprovement.tennessee.edu/
ash tree in Michigan killed by emerald ash borer; photo courtesy of (then) Mayor John Hieftje
The Forest Service is promoting its efforts to protect urban forests [see the Northeast Region’s “Roots in Research” in mid-December 2024]. The rationale is that urban forests provide substantial environmental and economic benefits that deserve more attention. These include air purification, temperature regulation and energy savings, water absorption, and improved public health. At the same time, urban forests face multiple and overlapping threats – including the one of greatest concern to us, introduction of tree-killing non-native insects and pathogens.
The article on which the Roots in Research “Science Brief” is based was actually published in 2022 in the Journal of Forestry. In it, David Nowak, Eric Greenfield, and Alexis Ellis evaluated historical and current threats to urban forests across the contiguous states and projected them 50 years into the future. Threats included urban expansion, climate change, insect infestation, and extreme weather events. Their goal was to help urban forest managers and policymakers prioritize resources and planning efforts.
I believe stakeholders should view these projects as underestimates because the sources Nowak et al. relied on for both future climatic conditions and non-native pest impacts are incomplete or outdated. I am not criticizing the choice of sources – they are the standard ones. But events have raised questions about their accuracy.
Nowak, Greenfield, and Ellis expected that urban tree cover will decline significantly by 2060. The principle cause is urban expansion — development of previously wooded areas. Development has traditionally been the leading cause of urban forest loss.
Newer threats have become obvious in recent decades – i.e., pest and disease attacks and extreme weather events.
coast live oak infected by GSOB; Heisey County Park, San Diego County photo by F.T. Campbell
The most troubling example of the sources’ weaknesses is the Alien Forest Pest Explorer (AFPE), on which the authors rely for their list of non-native insects and pathogens present in the United States. However, the compilers of this database decided not to include pests that are native to some parts of North America but are behaving as bioinvaders in other regions. The premier example is the goldspotted oak borer (GSOB), Agrilus auroguttatus. This insect kills three species of oaks native to southern California – coast live oak (Quercus agrifolia), California black oak (Q. kelloggii), and canyon live oak (Q. chrysolepis). Twelve years ago scientists estimated that GSOB had killed at least 100,000 trees in San Diego County; it has since been detected in widespread infestations in four other counties in southern California.
Not including GSOB (or Mediterranean oak borer; see below) skews the findings because of the importance of the oaks in California’s urban forests. Their genus is the second most-abundant native genus in the state’s urban forest, making up 6.5% of the trees. Because many of these trees are large, they contribute significantly to the ecosystem benefits provided by urban forests. Out of the 152,594 coast live oaks in 287 cities statewide, at least 30,000 of them meet GSOB’s preferred size limit (DBH greater than 18 – 20 inches [~45 cm]) (Love et al. 2022). The highest presence of oaks in urban forests in the South is in Santa Barbara – which has not yet been invaded by GSOB. However, built-up sections of Los Angeles – which are heavily invaded already — have between 250,000 and 300,000 coast live oak trees.
The Alien Forest Pest Explorer also does not include pests of palms. Palms are the first and second most the abundant species in urban areas of both the Southern California Coast and Southwest Desert regions (Love et al. 2022). Of course, palms contribute little to the ecosystem benefit associated with urban forests, but they are iconic symbols of the region. California’s palms are under attack by the South American palm weevil. https://cisr.ucr.edu/invasive-species/south-american-palm-weevil
More difficult to understand is the AFPC’s failure to include the Mediterranean oak borer, (MOB) (Xyleborus monographus). MOB has been introduced from Europe, so it fits the AFPE’s criteria for inclusion. MOB is killing valley (Quercus lobata) and blue oaks (Q. douglasii) in Lake, Napa, Sacramento, and Sonoma counties in California and Oregon oak (Q. garryana) in Troutdale, Salem, and other towns in Oregon.
Quercus lobata, killed by Mediterranean oak beetle
As to the data sources relied on for projections of future climatic factors, several measurements of the changing climate already exceed projections in the models. They expect intensified threats from changes in air temperature, precipitation, aridity, wildfire risk, flooding, and sea level rise. By 2060, temperatures in urban areas are expected to increase by 1.2 – 3.5° C. Nowak and colleagues expected this warming to exacerbate threats from heat stress, flooding, increased salinity, drought, and wildfire. Less certain but possible are more intense storms and pest outbreaks. As I noted above, perhaps even these projections understate the threats.
For example, in discussing flooding the authors relied on measurements of the historic 100-year flood plain. I understand that experts now say this standard is inadequate, given existing records and projected further increases in precipitation (especially high-intensity storms). Urban areas in 98% of the 2,424 counties Nowak et al. analyzed contain flood-prone areas.
Nowak et al. do mention two additional elements exacerbating the flood risk: the spread of impervious surfaces and location of many cities next to bays or wide rivers. In these latter cases, risks might include salt intrusion linked to higher water levels, even in the absence of flooding. The National Oceanographic and Atmospheric Administration’s “intermediate high” scenario projects sea level will rise 61 cm by 2060.
Nowak, Greenfield, and Ellis said the greatest overall threat is in the eastern states, especially New England other than Vermont and Maine; the mid-Atlantic; South Carolina; and Ohio. They say this arises from the combination of high levels of urbanization and accumulation of several threats. The specific threats include projected precipitation changes, storms (hurricanes in the southeast; ice storms in the Appalachians); sea level rise; and the abundance of non-native pests. I think that reliance on data from the past results in understating the hurricane risk in the Northeast (especially the Hudson and Connecticut river basins) and in North Carolina.
Nowak, Greenfield, and Ellis reminded us that a healthy urban forest canopy can help mitigate some of the threats associated with climate change. This applies particularly to local air temperatures. Reducing urban heat islands not only addresses a direct threat; it can also moderate such other threats as pest infestations, wildfire, aridity, and storm damage, especially runoff. They advocate science-based tree management programs including preserving existing trees and planting species that can thrive in the expected new local and regional environment, e.g., withstand droughts, flooding, saltwater exposure, or extreme temperatures.
I think their recommendation on pest threats is lame: they suggested “monitoring and managing local pest threats.” Non-native pests demand additional actions at all levels of authority — local, state, and federal. (See the “Fading Forests” reports linked to at the end of this blog, and earlier blogs under the category “invasive species policy”.) I have already noted troubling exclusion of some pests already present in urban areas of the continental United States. I understand that it is impossible to predict which additional pests might be introduced in the next 50 years. But I would have appreciated a sentence stating the near certainty that more pests will be introduced and cause damage to urban forests in the next 50 years.
Given the recent fires in the Los Angeles region, I believe we need new analyses of the risk of wildfire in cities and the positive and negative interactions with the urban forest.
Nowak, D.J., E.J. Greenfield, and A. Ellis. 2022. Assessing Urban Forest Threats across the conterminous United States. Journal of Forestry, 2022, Vol. 120, No. 6
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at https://treeimprovement.tennessee.edu/
emerald ash borer; some of PPA grants are funding evaluation of biocontrol efficacy
USDA APHIS has released information about its most recent annual allocation of funds under the Plant Pest and Disease Management & Disaster Prevention Program under §7721 of the Plant Protection Act. (Also see Fading Forests II and III; links provided at the end of this blog.) These funds support both critical needs and opportunities to strengthen the nation’s infrastructure for pest detection, surveillance, identification, and threat mitigation. Since 2009, this USDA program has provided nearly $940 million to more than 5,890 projects.
For FY25 APHIS allocated $62.725 million to fund 339 projects, about 58% of the proposals submitted. About $10 million has reserved for responding to pest and plant health emergencies throughout the year.
According to APHIS’ press release, the highest amount of funds (almost $16 million) is allocated to the category “Enhanced Plant Pest/Disease Survey.” Projects on “Enhanced Mitigation Capabilities” received $13.6 million. “Targetting Domestic Inspection Efforts to Vulnerable Points” received nearly $6 million. “Improving Pest Identification and Detection Technology” was funded at $5 million. Outreach & education received $4 million. I am not sure why these do not total $63 million.
Funding for States and Specific Pests
Wood-boring insects received about $2.3 million. These included more than $869,800 to assess the efficacy of biocontrol for controlling emerald ash borer (EAB) Agrilus planipennis, $687,410 was provided for various detection projects, and $450,000 for outreach efforts related to various pests. Ohio State received $93,000 to optimize traps for the detection of non-native scolytines (bark beetles).
Biocontrol efficacy will also be assessed for hemlock woolly adelgid, invasive shot hole borers, cactus moth, and several invasive plants (including Brazilian pepper). (Contact me to obtain a copy of CISP’s comments on this biocontrol program.)
Opuntia basilaris in Anza Boreggo; one of flat-padded Opuntia vulnerable to the cactus moth; photo by F.T. Campbell
Funding for other pests exceeded $1 million for spotted lanternfly (nearly $1.4 million), Asian defoliators ($1.2 million) and box tree moth (just over $1 million).
$630,000 was provided for detection surveys and studies of the sudden oak death pathogen Phytophthora ramorum, especially how it infects nursery stock. Nursery surveys are funded in Alabama, Louisiana, North Carolina, Ohio, Oklahoma, Pennsylvania, South Carolina, Tennessee, Virginia, and West Virginia. Most of these states are in regions considered most at risk to SOD infection of wildland plants.
sudden oak mortality of tanoak trees in southern Oregon; photo by Oregon Department of Forestry
Oregon received much-deserved $41,000 to evaluate the threat of the NA2 and EU2 lineages of P. ramorum to nurseries and forests Oregon also received $104,000 to respond to the detection of Phytophthora austrocedri in nurseries in the state. The Oregon outbreak has been traced to Ohio, but I see no record of funds to assist that state in determining how it was introduced.
Asian defoliator (e.g., Lymantrid moths) surveys have been funded for several years. This year’s projects are in Alaska, Arkansas, California, Kentucky, Maryland, Massachusetts, Mississippi, Montana, Nevada, North Carolina, Oregon, Tennessee, Texas, Washington, and West Virginia. While I agree that the introduction risk is not limited to coastal states with maritime ports, I don’t what criteria were applied in choosing the non-coastal states which are funded to search for these insects
Spotted lanternfly surveys (including technological improvements) or related outreach are funded in Alabama, Connecticut, Delaware, Kentucky, New Hampshire, New Jersey, North Carolina, Oregon, Pennsylvania, and Tennessee. California’s project is focused on postharvest treatments.
The Don’t Move Firewood project continues to be funded by APHIS. Several states also direct attention specifically to the firewood pathway: Kentucky, Maine, and Michigan.
I applaud the precautionary funding of the Agriculture Research Service to generate of high-quality genomic resources for managing the causal agent of Japanese oak wilt Dryadomyces quercivorous
Florida Department of Agriculture, North Carolina State University, and West Virginia University each received more than $100,000 to improve detection and management of invasive hornets.
Tennessee State University got $100,000 to continue efforts to detect and understand Vascular Streak Dieback in redbud Cercis canadensis.
Posted by Faith Campbell
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.
For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at https://treeimprovement.tennessee.edu/
The U.S. Fish and Wildlife Service (USFWS) has taken new action to protect North America’s salamanders from the pathogenic Salamander Chytrid Fungus Batrachochytriumsalamandrivorans; Bsal). The Center for Invasive Species Prevention (CISP) welcomes this action and urges you to help the Service to finalize it.
To read and comment on the interim rule, go here. The comment period closes on March 11.
oriental fire-bellied newt (Cynops orientalis); one of the non-native species imported in largest numbers before the 2016 Lacey Act interim rule; photo by Sebastian Voitel
USFWS acted under its authority to contained in the “injurious wildlife” provisions of the Lacey Act [18 U.S.C. 42(a)]. This statute, first adopted in 1900, empowers the Secretary of Interior to regulate human-mediated transport of any species of wild mammal, wild bird, fish, mollusk, crustacean, amphibian, or reptile found to be injurious to human beings; to the interests of agriculture, horticulture, or forestry; or to America’s wildlife or wildlife resources. Regulated articles include offspring or eggs of the listed species, dead specimens, and animal parts.
Any importation of a listed taxon into the U.S. is regulated. However, regulation of transport within the United States is complicated because of clumsy wording of the statute. In 2017, the D.C. Circuit Court of Appeals [U.S. Association of Reptile Keepers, Inc. v. Zinke [852 F.3d 1131 (D.C. Cir. 2017)] ruled that the law regulates transport of listed species (and their progeny, parts, etc.) between the contiguous 48 States and several other jurisdictions: Hawai`i, Puerto Rico, other U.S. territories, and the District of Columbia. However, transport among the “lower 48” states (e.g., from Virginia to Kentucky) or from the “lower 48” states to Alaska, is not regulated (unless the route to or from Alaska passes through Canada). In past years conservationists asked Congress to amend the law to close this obvious gap in protection, but without success.
It is still illegal to transport listed species across any state borders if the wildlife specimen was either imported to the U.S. or transported between the above-enumerated jurisdictions in violation of any U.S. law. [Lacey Act Amendments of 1981, 16 U.S.C. 3372(a)(1)]
Those wishing to transport a listed species for zoological, educational, medical, or scientific purposes may apply for a permit from USFWS to do so.
The threat to salamanders
The United States is a center of diversity for salamanders. Our nation is home to 221 species of salamanders, more than any other country. These species are in 23 genera in nine families. In fact, nine of the 10 families of salamanders worldwide are found in the U.S. Highest diversity is found along the Pacific Coast and in the southern Appalachian Mountains. As the most abundant vertebrates in their forest habitats, salamanders make significant contributions to nutrient cycling and even carbon sequestration.
Because they depend on both aquatic and terrestrial habitats, salamanders face many threats to their existence. Twenty species of American salamanders from 6 genera (Ambystoma, Batrachoseps, Eurycea, Necturus, Phaeognathus, Plethodon) are listed under the Endangered Species Act link as endangered or threatened. A subspecies of hellbender salamander (Cryptobranchus alleganiensis alleghaniensis) has been proposed for listing.
Amylosterium xxx – marbled salamander; photo by John B. Clare via Flickr
Over the last 12 years, they have faced an alarming new threat.
In 2013, European scientists detected rapid, widespread death of salamander populations in the Netherlands. They determined that the cause was a fungal disease caused by Batrachochytrium salamandrivoran (Bsal). Their alarm was heightened because this fungus is closely related to another, Batrachochytrium dendrobatidis (Bd), which had recently caused serious decline of more than 100 frog and toad species, including driving several to extinction, and had been transported to all continents except Antartica.
Responding to this new threat, amphibian conservation specialists and wildlife groups generally banded together to put pressure on the USFWS to take regulatory action. In response, in 2016, the USFWS adopted an interim rule link prohibiting importation of 20 genera of salamanders. These genera had been shown by scientists to contain at least one species which either suffered mortality when it was exposed to Bsal or could transmit the disease to other salamanders. At the time, Bsal had been shown by scientific studies to be lethal to two American species; USFWS had evidence that U.S. species in other genera could “carry” the pathogen and infect other animals. Three of the species included in the 2016 action had already been listed as endangered or threatened. USFWS’ action cut down the number of salamanders being imported annually by ~95% (based on official import data compiled by the USFWS’ Office of Law Enforcement).
The prohibitions do not apply to articles that cannot transmit the fungus. These include eggs or gametes; parts or tissues that have been chemically preserved, chemically treated, or heat treated so that the pathogen, if present, is rendered non-viable; and molecular specimens consisting of only the nucleic acids from organisms.
Now, 8 years later, the USFWS is acting to finalize the 2016 “interim” rule and to regulate importation and transportation of an additional 16 genera of salamanders. This step had been urged by the National Environmental Coalition on Invasive Species (NECIS), and many others, in their public comments on that Interim Rule. Extending protection to these 16 genera is based on research conducted since the 2016 Rule. Species in 13 of the newly protected genera are considered likely carriers of the disease. Nine species have been demonstrated to be killed by Bsal. No studies have yet determined the vulnerability of more than 50 species in 10 genera of North American salamanders, including four species listed under the Endangered Species Act.
The 36 genera covered by the combined actions of 2016 and 2025 actions are currently considered to comprise ~ 426 species. However, changes in taxonomy are frequent. So USFWS is no longer enumerating the species protected, but is instead relying on listing genera. The regulations apply to all species in a listed genus (whether so classified now or in the future) as well as hybrids of species in any listed genus, including offspring from a pair in which only one of the parents is in a genus listed as injurious.
Appalachian hellbender Cryptobranchus alleganiensis alleghaniensis; historic book illustration via Flickr
USFWS chose to issue “interim” rules in both 2016 and 2025 because that action takes effect almost immediately. (The 2025 interim rule take effect on January 25th.) The usual rulemaking process governed by the Administrative Procedure Act (5 U.S.C. 551 et seq.) often takes years to complete. During that time, the species proposed for listing may still be imported and transported – that is, they could place additional salamander populations at risk of infection by Bsal. The USFWS states that it is unlikely to be able to protect or restore species and ecosystems if the pathogen does become established in the U.S.
In the interval between 2016 and now, Canada banned importation of all living or dead salamanders, eggs, sperm, tissue cultures, and embryos in response to the Bsal threat.
During these years scientists also completed several studies aimed at clarifying which salamander species are either at risk of infection by Bsal or are able to harbor and transmit the pathogen to other salamanders. The USFWS cites studies by, inter alia, Yuan et al. 2018, Carter et al. 2020, Barnhart et al. 2020, Grear et al. 2021, and Gray et al. 2023. USFWS says it cannot act in the absence of such studies, since it must justify its protective actions on scientifically defensible information.
Another relevant question is whether Bsal is already established in North America? Waddle et al. 2020 carried out an intensive search in 35 states that found no evidence that it is. The USFWS concludes that prohibiting importation of additional salamander taxa is still an effective measure to protect North American biodiversity. This is because the international commercial trade in salamanders is the most likely pathway by which Bsal would be introduced to the United States. We note in support of this assertion that former USFWS employee Su Jewell found years ago that none of the 288 non-indigenous species listed as injurious while they are not established in the U.S. has become established since the listing.
The Federal Register document includes a lengthy discussions of why the USFWS has chosen to act under the Lacey Act rather than try some other approach, e.g., setting up quarantine areas or a disease-free certification program for traded salamanders. Among the factors they considered were the current absence of certainty in testing procedures and the possibility of falsified documentation.
WEAKNESSES THE LACEY ACT
The Lacey Act is the principal statute under which the U.S. Government tries to manage invasive species of wildlife – at least those that are not considered “plant pests”. It is not surprising that a law written 125 years ago is no longer the best fit for current conservation needs. See our earlier blog and discussions by, inter alia, Fowler, Lodge, and Hsia and Anderson.
Here, the USFWS lacks authority to regulate pathogens [viruses, bacteria, and fungi that cause disease] or fomites (materials, such as water, that can act as passive carriers and transfer pathogens). Instead, USFWS regulates the hosts. The USFWS previously listed dead salmonids as “injurious” because their carcasses can transmit several viruses.
Another issue is that USFWS cannot designate a taxon “injurious” and regulate trade in it until the Service has conclusive scientific evidence that the species or genus meets the definition. The USFWS has chosen to rely on genus-level data rather than require that each species be tested. Still, as we noted above, American salamanders in 10 genera remain outside the Lacey Act’s protections because studies have not yet been conducted. The USFWS concedes that many of these genera might contain species that are vulnerable to this potentially deadly fungus.
As to relying on laboratory tests of a taxon’s response to the pathogen, the USFWS believes that environmental stresses inherent living in the wild might exacerbate a salamander species’ vulnerability to the disease.
The USFWS is requesting public comment specifically on:
(1) the extent to which species in the 16 genera listed by this interim rule are currently in domestic production for sale – and in which States this occurs? How many businesses sell salamanders from the listed genera between enumerated jurisdictions (e.g., between “lower 48” states and Hawai`i or the District of Columbia)?
(2) What state-listed endangered or threatened species would be affected by introduction of Bsal?
(3) How could this interim rule be modified to reduce costs or burdens for some or all entities, including small entities, while still meeting USFWS’s goals? What are the costs and benefits of the modifications?
(4) Is there any evidence suggesting that Bsal has been established in the U.S.? Or that any of these genera are not carriers of Bsal? Or that additional genera are carriers of Bsal? Is there evidence that eggs or other reproductive material pose a greater risk than USFWS determined, so should be regulated?
(5) Could a reliable health certificate system be developed that would allow imports of Bsal-free salamanders? Are there treatments that would ensure imported salamanders are reliably free of Bsal? How could compliance be monitored? As to salamander specimens, parts, or products, are there other treatments proven adequate to render Bsal non-viable?
(6) Do any Federal, State, or local rules duplicate, overlap, or conflict w/ this interim rule?
CISP encourages those with knowledge of amphibian conservation and disease to comment. Slow progress has been made toward blocking Bsal from the U.S., but the story is not yet closed.
See also the articles by Su Jewell,
Jewell, S.D. 2020 A century of injurious wildlife listing under the Lacey Act: a history. Management of Biological Invasions 11(3): 356–371, https://doi.org/10. 3391/mbi.2020.11.3.01
Jewell, S.D. and P.L. Fuller 2021 The unsung success of injurious wildlife listing under the Lacey Act. Management of Biological Invasions 2021 Volume 12 Issue 3
Posted by Faith Campbell and Peter Jenkins (former member of CISP’s board and consultant to NECIS and other groups on amphibian disease regulation)
We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.